8,774 research outputs found

    Soft Manifold Dynamics Behind Negative Thermal Expansion

    Full text link
    Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy modes which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.Comment: 5 pages, 3 figure

    Understanding the effect resonant magnetic perturbations have on ELMs

    Full text link
    All current estimations of the energy released by type I ELMs indicate that, in order to ensure an adequate lifetime of the divertor targets on ITER, a mechanism is required to decrease the amount of energy released by an ELM, or to eliminate ELMs altogether. One such amelioration mechanism relies on perturbing the magnetic field in the edge plasma region, either leading to more frequent, smaller ELMs (ELM mitigation) or ELM suppression. This technique of Resonant Magnetic Perturbations (RMPs) has been employed to suppress type I ELMs at high collisionality/density on DIII-D, ASDEX Upgrade, KSTAR and JET and at low collisionality on DIII-D. At ITER-like collisionality the RMPs enhance the transport of particles or energy and keep the edge pressure gradient below the 2D linear ideal MHD critical value that would trigger an ELM, whereas at high collisionality/density the type I ELMs are replaced by small type II ELMs. Although ELM suppression only occurs within limitied operational ranges, ELM mitigation is much more easily achieved. The exact parameters that determine the onset of ELM suppression are unknown but in all cases the magnetic perturbations produce 3D distortions to the plasma and enhanced particle transport. The incorporation of these 3D effects in codes will be essential in order to make quantitative predictions for future devices.Comment: 32 pages, 9 figure

    Association between fast food purchasing and the local food environment

    Get PDF
    Objective: In this study, an instrument was created to measure the healthy and unhealthy characteristics of food environments and investigate associations between the whole of the food environment and fast food consumption.Design and subjects: In consultation with other academic researchers in this field, food stores were categorised to either healthy or unhealthy and weighted (between +10 and &minus;10) by their likely contribution to healthy/unhealthy eating practices. A healthy and unhealthy food environment score (FES) was created using these weightings. Using a cross-sectional study design, multilevel multinomial regression was used to estimate the effects of the whole food environment on the fast food purchasing habits of 2547 individuals.Results: Respondents in areas with the highest tertile of the healthy FES had a lower likelihood of purchasing fast food both infrequently and frequently compared with respondents who never purchased, however only infrequent purchasing remained significant when simultaneously modelled with the unhealthy FES (odds ratio (OR) 0.52; 95% confidence interval (CI) 0.32&ndash;0.83). Although a lower likelihood of frequent fast food purchasing was also associated with living in the highest tertile of the unhealthy FES, no association remained once the healthy FES was included in the models. In our binary models, respondents living in areas with a higher unhealthy FES than healthy FES were more likely to purchase fast food infrequently (OR 1.35; 95% CI 1.00&ndash;1.82) however no association was found for frequent purchasing.Conclusion: Our study provides some evidence to suggest that healthier food environments may discourage fast food purchasing.<br /

    Characterisation of the L-mode Scrape Off Layer in MAST: decay lengths

    Full text link
    This work presents a detailed characterisation of the MAST Scrape Off Layer in L-mode. Scans in line averaged density, plasma current and toroidal magnetic field were performed. A comprehensive and integrated study of the SOL was allowed by the use of a wide range of diagnostics. In agreement with previous results, an increase of the line averaged density induced a broadening of the midplane density profile.Comment: 30 pages, 11 figure

    Prevalence of Presenting Conditions in Grey Seal Pups (Halichoerus grypus) Admitted for Rehabilitation

    Get PDF
    A retrospective survey was performed on the presenting conditions of 205 live grey seal pups (Halichoerus grypus) admitted to the Cornish Seal Sanctuary in Gweek, United Kingdom between May 2005 and March 2011. The purpose of the survey was to examine the prevalence of various presenting signs at the sanctuary. The presenting signs were classified into nine non-mutually exclusive categories: ocular disorders, nasal disorders, oral disorders, respiratory disorders, orthopaedic disorders, puncture wounds, abrasions, netting injuries, and onychia. The sex ratio of seal pups in this study was 1.35 males per female. Of the 205 examined for rehabilitation, 22 (10.73%) did not survive to release. 68.78% of grey seal pups presented with puncture wounds, 47.80% with respiratory disorders, 46.34% with ocular disorders, 42.63% malnourished, 36.59% with abrasions, 25.37% with oral disorders, 23.90% with nasal disorders, 11.71% with orthopaedic disorders, 9.27% with onychia, and 3.41% presented with netting injuries. 52% were normothermic, 42% were hyperthermic, and 5% were hypothermic. Associations between gender, outcome of rehabilitation, hospitalisation time and presenting disorders were examined. In addition, admissions rates were found to display seasonality. The results of this study will aid in future preparation of grey seal rehabilitation facilities

    Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy

    Full text link
    We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array' approach in effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic
    corecore