172 research outputs found

    CD4+CD25+ Regulatory T Cells Can Mediate Suppressor Function in the Absence of Transforming Growth Factor β1 Production and Responsiveness

    Get PDF
    CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1

    Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reactive oxygen species (ROS), superoxide and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), are necessary for appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss, suggesting that Parkinson's disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons, suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons themselves, thus providing an early therapeutic target.</p> <p>Methods</p> <p>NADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-PCR. Superoxide was measured by flow cytometric detection of H<sub>2</sub>O<sub>2</sub>-induced carboxy-H<sub>2</sub>-DCFDA fluorescence. Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22<sup>phox</sup>, or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II type 1 receptor-induced NADPH oxidase activation.</p> <p>Results</p> <p>Nigral dopaminergic neurons <it>in situ</it> expressed three subunits necessary for NADPH oxidase activation, and these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22<sup>phox</sup>, or losartan. A two-wave ROS cascade was identified: 1) as a first wave, mitochondrial H<sub>2</sub>O<sub>2 </sub>production was first noted at three hours of MPP+ treatment; and 2) as a second wave, H<sub>2</sub>O<sub>2 </sub>levels were further increased by 24 hours. This second wave was eliminated by pharmacological inhibitors and a blocker of protein synthesis.</p> <p>Conclusions</p> <p>A two-wave cascade of ROS production is active in nigral dopaminergic neurons in response to neurotoxicity-induced superoxide. Our findings allow us to conclude that superoxide generated by NADPH oxidase present in nigral neurons contributes to the loss of such neurons in PD. Losartan suppression of nigral-cell superoxide production suggests that angiotensin receptor blockers have potential as PD preventatives.</p

    Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    Get PDF
    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle

    Menopausal hormone therapy is associated with having high blood pressure in postmenopausal women : observational cohort study

    Get PDF
    Background: The relationship between menopausal hormone therapy (MHT) and cardiovascular risk remains controversial, with a number of studies advocating the use of MHT in reducing risk of cardiovascular diseases, while others have shown it to increase risk. The aim of this study was to determine the association between menopausal hormone therapy and high blood pressure. Methods and Findings: A total of 43,405 postmenopausal women were included in the study. Baseline data for these women were sourced from the 45 and Up Study, Australia, a large scale study of healthy ageing. These women reported being postmenopausal, having an intact uterus, and had not been diagnosed with high blood pressure prior to menopause. Odds ratios for the association between MHT use and having high blood pressure were estimated using logistic regression, stratified by age (<56 years, 56-61 years, 62-70 years and over 71 years) and adjusted for demographic and lifestyle factors. MHT use was associated with higher odds of having high blood pressure: past menopausal hormone therapy use: <56 years (adjusted odds ratio 1.59, 99% confidence interval 1.15 to 2.20); 56-61 years (1.58, 1.31 to 1.90); 62-70 years (1.26, 1.10 to 1.44). Increased duration of hormone use was associated with higher odds of having high blood pressure, with the effect of hormone therapy use diminishing with increasing age. Conclusions: Menopausal hormone therapy use is associated with significantly higher odds of having high blood pressure, and the odds increase with increased duration of use. High blood pressure should be conveyed as a health risk for people considering MHT use

    A multi-centre, open label, randomised, parallel-group, superiority Trial to compare the efficacy of URsodeoxycholic acid with RIFampicin in the management of women with severe early onset Intrahepatic Cholestasis of pregnancy : the TURRIFIC randomised trial

    Get PDF
    BackgroundSevere early onset (less than 34weeks gestation) intrahepatic cholestasis of pregnancy (ICP) affects 0.1% of pregnant women in Australia and is associated with a 3-fold increased risk of stillbirth, fetal hypoxia and compromise, spontaneous preterm birth, as well as increased frequencies of pre-eclampsia and gestational diabetes. ICP is often familial and overlaps with other cholestatic disorders.Treatment options for ICP are not well established, although there are limited data to support the use of ursodeoxycholic acid (UDCA) to relieve pruritus, the main symptom. Rifampicin, a widely used antibiotic including in pregnant women, is effective in reducing pruritus in non-pregnancy cholestasis and has been used as a supplement to UDCA in severe ICP. Many women with ICP are electively delivered preterm, although there are no randomised data to support this approach.MethodsWe have initiated an international multicentre randomised clinical trial to compare the clinical efficacy of rifampicin tablets (300mg bd) with that of UDCA tablets (up to 2000mg daily) in reducing pruritus in women with ICP, using visual pruritus scores as a measuring tool.DiscussionOur study will be the first to examine the outcomes of treatment specifically in the severe early onset form of ICP, comparing "standard" UDCA therapy with rifampicin, and so be able to provide for the first-time high-quality evidence for use of rifampicin in severe ICP. It will also allow an assessment of feasibility of a future trial to test whether elective early delivery in severe ICP is beneficial.Trial identifiersAustralian New Zealand Clinical Trials Registration Number (ANZCTR): 12618000332224p (29/08/2018). HREC No: HREC/18/WCHN/36.EudraCT number: 2018-004011-44.IRAS: 272398.NHMRC registration: APP1152418 and APP117853.Peer reviewe

    Early Intervention for Children Aged 0 to 2 Years With or at High Risk of Cerebral Palsy International Clinical Practice Guideline Based on Systematic Reviews:International Clinical Practice Guideline Based on Systematic Reviews

    Get PDF
    IMPORTANCE: Cerebral palsy (CP) is the most common childhood physical disability. Early intervention for children younger than 2 years with or at risk of CP is critical. Now that an evidence-based guideline for early accurate diagnosis of CP exists, there is a need to summarize effective, CP-specific early intervention and conduct new trials that harness plasticity to improve function and increase participation. Our recommendations apply primarily to children at high risk of CP or with a diagnosis of CP, aged 0 to 2 years. OBJECTIVE: To systematically review the best available evidence about CP-specific early interventions across 9 domains promoting motor function, cognitive skills, communication, eating and drinking, vision, sleep, managing muscle tone, musculoskeletal health, and parental support. EVIDENCE REVIEW: The literature was systematically searched for the best available evidence for intervention for children aged 0 to 2 years at high risk of or with CP. Databases included CINAHL, Cochrane, Embase, MEDLINE, PsycInfo, and Scopus. Systematic reviews and randomized clinical trials (RCTs) were appraised by A Measurement Tool to Assess Systematic Reviews (AMSTAR) or Cochrane Risk of Bias tools. Recommendations were formed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework and reported according to the Appraisal of Guidelines, Research, and Evaluation (AGREE) II instrument. FINDINGS: Sixteen systematic reviews and 27 RCTs met inclusion criteria. Quality varied. Three best-practice principles were supported for the 9 domains: (1) immediate referral for intervention after a diagnosis of high risk of CP, (2) building parental capacity for attachment, and (3) parental goal-setting at the commencement of intervention. Twenty-eight recommendations (24 for and 4 against) specific to the 9 domains are supported with key evidence: motor function (4 recommendations), cognitive skills (2), communication (7), eating and drinking (2), vision (4), sleep (7), tone (1), musculoskeletal health (2), and parent support (5). CONCLUSIONS AND RELEVANCE: When a child meets the criteria of high risk of CP, intervention should start as soon as possible. Parents want an early diagnosis and treatment and support implementation as soon as possible. Early intervention builds on a critical developmental time for plasticity of developing systems. Referrals for intervention across the 9 domains should be specific as per recommendations in this guideline

    Influence of gestational age at initiation of antihypertensive therapy: secondary analysis of CHIPS trial data (control of hypertension in pregnancy study)

    Get PDF
    For hypertensive women in CHIPS (Control of Hypertension in Pregnancy Study), we assessed whether the maternal benefits of tight control could be achieved, while minimizing any potentially negative effect on fetal growth, by delaying initiation of antihypertensive therapy until later in pregnancy. For the 981 women with nonsevere, chronic or gestational hypertension randomized to less-tight (target diastolic blood pressure, 100 mm Hg), or tight (target, 85 mm Hg) control, we used mixed-effects logistic regression to examine whether the effect of less-tight (versus tight) control on major outcomes was dependent on gestational age at randomization, adjusting for baseline factors as in the primary analysis and including an interaction term between gestational age at randomization and treatment allocation. Gestational age was considered categorically (quartiles) and continuously (linear or quadratic form), and the optimal functional form selected to provide the best fit to the data based on the Akaike information criterion. Randomization before (but not after) 24 weeks to less-tight (versus tight) control was associated with fewer babies with birth weight 48 hours (Pinteraction=0.354). For the mother, less-tight (versus tight) control was associated with more severe hypertension at all gestational ages but particularly so before 28 weeks (Pinteraction=0.076). In women with nonsevere, chronic, or gestational hypertension, there seems to be no gestational age at which less-tight (versus tight) control is the preferred management strategy to optimize maternal or perinatal outcomes
    corecore