644 research outputs found

    The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales

    Full text link
    (Abridged) We present a comprehensive analysis of the relationship between star formation rate surface density (SFR SD) and gas surface density (gas SD) at sub-kpc resolution in a sample of 18 nearby galaxies. We use high resolution HI data from THINGS, CO data from HERACLES and BIMA SONG, 24 micron data from the Spitzer Space Telescope, and UV data from GALEX. We target 7 spiral galaxies and 11 late-type/dwarf galaxies and investigate how the star formation law differs between the H2-dominated centers of spiral galaxies, their HI-dominated outskirts and the HI-rich late-type/dwarf galaxies. We find that a Schmidt-type power law with index N=1.0+-0.2 relates the SFR SD and the H2 SD across our sample of spiral galaxies, i.e., that H2 forms stars at a constant efficiency in spirals. The average molecular gas depletion time is ~2*10^9 yrs. We interpret the linear relation and constant depletion time as evidence that stars are forming in GMCs with approximately uniform properties and that the H2 SD may be more a measure of the filling fraction of giant molecular clouds than changing conditions in the molecular gas. The relationship between total gas SD and SFR SD varies dramatically among and within spiral galaxies. Most galaxies show little or no correlation between the HI SD and the SFR SD. As a result, the star formation efficiency (SFE = SFR SD / gas SD) varies strongly across our sample and within individual galaxies. We show that in spirals the SFE is a clear function of radius, while the dwarf galaxies in our sample display SFEs similar to those found in the outer optical disks of the spirals. Another general feature of our sample is a sharp saturation of the HI SD at ~9 M_sol/pc^2 in both the spiral and dwarf galaxies.Comment: Accepted for publication in the AJ special THINGS issue. For a high-resolution version visit: http://www.mpia.de/THINGS/Publications.htm

    Resource Intensity for Children and Youth: The Development of an Algorithm to Identify High Service Users in Children’s Mental Health

    Get PDF
    Children’s mental health care plays a vital role in many social, health care, and education systems, but there is evidence that appropriate targeting strategies are needed to allocate limited mental health care resources effectively. The aim of this study was to develop and validate a methodology for identifying children who require access to more intense facility-based or community resources. Ontario data based on the interRAI Child and Youth Mental Health instruments were analysed to identify predictors of service complexity in children’s mental health. The Resource Intensity for Children and Youth (RIChY) algorithm was a good predictor of service complexity in the derivation sample. The algorithm was validated with additional data from 61 agencies. The RIChY algorithm provides a psychometrically sound decision-support tool that may be used to inform the choices related to allocation of children’s mental health resources and prioritisation of clients needing community- and facility-based resources

    Measuring subdiffusion parameters

    Full text link
    We propose a method to extract from experimental data the subdiffusion parameter α\alpha and subdiffusion coefficient DαD_\alpha which are defined by means of the relation =2Dα/Γ(1+α)tα =2D_\alpha/\Gamma(1+\alpha) t^\alpha where denotes a mean square displacement of a random walker starting from x=0x=0 at the initial time t=0t=0. The method exploits a membrane system where a substance of interest is transported in a solvent from one vessel to another across a thin membrane which plays here only an auxiliary role. Using such a system, we experimentally study a diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion equation with the initial and boundary conditions representing the system under study. Confronting the experimental data with the derived formulas, we show a subdiffusive character of the sugar transport in gel solvent. We precisely determine the parameter α\alpha, which is smaller than 1, and the subdiffusion coefficient DαD_\alpha.Comment: 17 pages, 9 figures, revised, to appear in Phys. Rev.

    Discovery of strongly blue shifted mid-infrared [NeIII] and [NeV] emission in ULIRGs

    Full text link
    We report the discovery of blue shifted (delta(V) > 200 km/s) mid-infrared [NeIII] and/or [NeV] emission in 25 out of 82 ULIRGs (30% of our sample). The incidence of blue shifted [NeV] emission is even higher (59%) among the sources with a [NeV] detection -- the tell-tale signature of an active galactic nucleus (AGN). Sixteen ULIRGs in our sample, eleven of which are optically classified as AGN, have [NeIII] blue shifts above 200 km/s. A comparison of the line profiles of their 12.81um [NeII], 15.56um [NeIII] and 14.32um [NeV] lines reveals the ionization of the blue shifted gas to increase with blue shift, implying decelerating outflows in a stratified medium, photo-ionized by the AGN. The strong correlation of the line width of the [NeIII] line with the radio luminosity indicates that interaction of expanding radio jets with the dense ISM surrounding the AGN may explain the observed neon line kinematics for the strongest radio sources in this sample.Comment: Accepted for publication by ApJ Letters. 15 pages, 4 figure

    Arm & Interarm Star Formation in Spiral Galaxies

    Full text link
    We investigate the relationship between spiral arms and star formation in the grand-design spirals NGC 5194 and NGC 628 and in the flocculent spiral NGC 6946. Filtered maps of near-IR (3.6 micron) emission allow us to identify "arm regions" that should correspond to regions of stellar mass density enhancements. The two grand-design spirals show a clear two-armed structure, while NGC 6946 is more complex. We examine these arm and interarm regions, looking at maps that trace recent star formation - far-ultraviolet (GALEX NGS) and 24 micron emission (Spitzer, SINGS) - and cold gas - CO (Heracles) and HI (Things). We find the star formation tracers and CO more concentrated in the spiral arms than the stellar 3.6 micron flux. If we define the spiral arms as the 25% highest pixels in the filtered 3.6 micron images, we find that the majority (60%) of star formation tracers occurs in the interarm regions; this result persists qualitatively even when considering the potential impact of finite data resolution and diffuse interarm 24 micron emission. Even with a generous definition of the arms (45% highest pixels), interarm regions still contribute at least 30% to the integrated star formation rate tracers. We look for evidence that spiral arms trigger star or cloud formation using the ratios of star formation rate (SFR, traced by a combination of FUV and 24 micron emission) to H_2 (traced by CO) and H_2 to HI. Any enhancement of SFR / M(H_2) in the arm region is very small (less than 10%) and the grand design spirals show no enhancement compared to the flocculent target. Arm regions do show a weak enhancement in H_2/HI compared to the interarm regions, but at a fixed gas surface density there is little clear enhancement in the H_2/HI ratio in the arm regions. Thus, it seems that spiral arms may only act to concentrate the gas to higher densities in the arms.Comment: 11 pages, 9 Figures, accepted by Ap

    The Opacity of Spiral Galaxy Disks VIII: Structure of the Cold ISM

    Get PDF
    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper, we compare two techniques, one based on emission and one on absorption, applied on sections of fourteen disk galaxies. The two measurements reflect, respectively the average and apparent optical depth of a disk section. Hence, they depend differently on the average number and optical depth of ISM structures in the disk. The small scale geometry of the cold ISM is critical for accurate models of the overall energy budget of spiral disks. ISM geometry, relative contributions of different stellar populations and dust emissivity are all free parameters in galaxy Spectral Energy Distribution (SED) models; they are also sometimes degenerate, depending on wavelength coverage. Our aim is to constrain typical ISM geometry. The apparent optical depth measurement comes from the number of distant galaxies seen in HST images through the foreground disk. We measure the IR flux in images from the {\it Spitzer} Infrared Nearby Galaxy Survey in the same section of the disk that was covered by HST. A physical model of the dust is fit to the SED to estimate the dust surface density, mean temperature, and brightness in these disk sections. The surface density is subsequently converted into the average optical depth estimate. The two measurements generally agree. The ratios between the measured average and apparent optical depths of the disk sections imply optically thin clouds in these disks. Optically thick disks, are likely to have more than a single cloud along the line-of-sight.Comment: 31 pages, 5 figures, 4 tables, accepted for publication in A
    • …
    corecore