337 research outputs found
Network-Free Inference of Knockout Effects in Yeast
Perturbation experiments, in which a certain gene is knocked out and the expression levels of other genes are observed, constitute a fundamental step in uncovering the intricate wiring diagrams in the living cell and elucidating the causal roles of genes in signaling and regulation. Here we present a novel framework for analyzing large cohorts of gene knockout experiments and their genome-wide effects on expression levels. We devise clustering-like algorithms that identify groups of genes that behave similarly with respect to the knockout data, and utilize them to predict knockout effects and to annotate physical interactions between proteins as inhibiting or activating. Differing from previous approaches, our prediction approach does not depend on physical network information; the latter is used only for the annotation task. Consequently, it is both more efficient and of wider applicability than previous methods. We evaluate our approach using a large scale collection of gene knockout experiments in yeast, comparing it to the state-of-the-art SPINE algorithm. In cross validation tests, our algorithm exhibits superior prediction accuracy, while at the same time increasing the coverage by over 25-fold. Significant coverage gains are obtained also in the annotation of the physical network
Studying Cat (Felis catus) Diabetes: Beware of the Acromegalic Imposter
Naturally occurring diabetes mellitus (DM) is common in domestic cats (Felis catus). It has been proposed as a model for human Type 2 DM given many shared features. Small case studies demonstrate feline DM also occurs as a result of insulin resistance due to a somatotrophinoma. The current study estimates the prevalence of hypersomatotropism or acromegaly in the largest cohort of diabetic cats to date, evaluates clinical presentation and ease of recognition. Diabetic cats were screened for hypersomatotropism using serum total insulin-like growth factor-1 (IGF-1; radioimmunoassay), followed by further evaluation of a subset of cases with suggestive IGF-1 (>1000 ng/ml) through pituitary imaging and/ or histopathology. Clinicians indicated pre-test suspicion for hypersomatotropism. In total 1221 diabetic cats were screened; 319 (26.1%) demonstrated a serum IGF-1>1000 ng/ml (95% confidence interval: 23.6-28.6%). Of these cats a subset of 63 (20%) underwent pituitary imaging and 56/63 (89%) had a pituitary tumour on computed tomography; an additional three on magnetic resonance imaging and one on necropsy. These data suggest a positive predictive value of serum IGF-1 for hypersomatotropism of 95% (95% confidence interval: 90-100%), thus suggesting the overall hypersomatotropism prevalence among UK diabetic cats to be 24.8% (95% confidence interval: 21.2-28.6%). Only 24% of clinicians indicated a strong pre-test suspicion; most hypersomatotropism cats did not display typical phenotypical acromegaly signs. The current data suggest hypersomatotropism screening should be considered when studying diabetic cats and opportunities exist for comparative acromegaly research, especially in light of the many detected communalities with the human disease
The GOAT-Ghrelin System Is Not Essential for Hypoglycemia Prevention during Prolonged Calorie Restriction
Ghrelin acylation by ghrelin O-acyltransferase (GOAT) has recently been reported to be essential for the prevention of hypoglycemia during prolonged negative energy balance. Using a unique set of four different genetic loss-of-function models for the GOAT/ghrelin/growth hormone secretagogue receptor (GHSR) system, we thoroughly tested the hypothesis that lack-of-ghrelin activation or signaling would lead to hypoglycemia during caloric deprivation.
Male and female knockout (KO) mice for GOAT, ghrelin, GHSR, or both ghrelin and GHSR (dKO) were subjected to prolonged calorie restriction (40% of ad libitum chow intake). Body weight, fat mass, and glucose levels were recorded daily and compared to wildtype (WT) controls. Forty-eight hour blood glucose profiles were generated for each individual mouse when 2% or less body fat mass was reached. Blood samples were obtained for analysis of circulating levels of acyl- and desacyl-ghrelin, IGF-1, and insulin.
Chronic calorie restriction progressively decreased body weight and body fat mass in all mice regardless of genotype. When fat mass was depleted to 2% or less of body weight for 2 consecutive days, random hypoglycemic events occurred in some mice across all genotypes. There was no increase in the incidence of hypoglycemia in any of the four loss-of-function models for ghrelin signaling including GOAT KO mice. Furthermore, no differences in insulin or IGF-1 levels were observed between genotypes.
The endogenous GOAT-ghrelin-GHSR system is not essential for the maintenance of euglycemia during prolonged calorie restriction
Glomerular filtration rate and prevalence of chronic kidney disease in Wilmsâ tumour survivors
Glomerular filtration rate (GFR) was evaluated in 32 Wilmsâ tumour survivors (WTs) in a cross-sectional study using 99 Tc-diethylene triamine pentaacetic acid (99 Tc-DTPA) clearance, the Schwartz formula, the new Schwartz equation for chronic kidney disease (CKD), cystatin C serum concentration and the Filler formula. Kidney damage was established by beta-2-microglobulin (B-2-M) and albumin urine excretion, urine sediment and ultrasound examination. Blood pressure was measured. No differences were found between the mean GFR in 99 Tc-DTPA and the new Schwartz equation for CKD (91.8â±â11.3 vs. 94.3â±â10.2 ml/min/1.73 m2 [pâ=â0.55] respectively). No differences were observed between estimated glomerular filtration rate (eGFR) using the Schwartz formula and the Filler formula either (122.3â±â19.9 vs. 129.8â±â23.9 ml/min/1.73 m2 [pâ=â0.28] respectively). Increased urine albumin and B-2-M excretion, which are signs of kidney damage, were found in 7 (22%) and 3 (9.4%) WTs respectively. Ultrasound signs of kidney damage were found in 14 patients (43%). Five patients (15.6%) had more than one sign of kidney damage. Eighteen individuals (56.25%) had CKD stage I (10 with signs of kidney damage; 8 without). Fourteen individuals (43.75%) had CKD stage II (6 with signs of kidney damage; 8 without). The new Schwartz equation for CKD better estimated GFR in comparison to the Schwartz formula and the Filler formula. Furthermore, the WT survivors had signs of kidney damage despite the fact that GFR was not decreased below 90 ml/min/1.73 m2 with 99 Tc- DTPA
Sporadic hemangioblastomas are characterized by cryptic VHL inactivation
Abstract
Hemangioblastomas consist of 10-20% neoplastic âstromalâ cells within a vascular tumor cell mass of reactive pericytes, endothelium and lymphocytes. Familial cases of central nervous system hemangioblastoma uniformly result from mutations in the Von Hippel-Lindau (VHL) gene. In contrast, inactivation of VHL has been previously observed in only a minority of sporadic hemangioblastomas, suggesting an alternative genetic etiology. We performed deep-coverage DNA sequencing on 32 sporadic hemangioblastomas (whole exome discovery cohort nâ=â10, validation nâ=â22), followed by analysis of clonality, copy number alteration, and somatic mutation. We identified somatic mutation, loss of heterozygosity and/or deletion of VHL in 8 of 10 discovery cohort tumors. VHL inactivating events were ultimately detected in 78% (25/32) of cases. No other gene was significantly mutated. Overall, deep-coverage sequence analysis techniques uncovered VHL alterations within the neoplastic fraction of these tumors at higher frequencies than previously reported. Our findings support the central role of VHL inactivation in the molecular pathogenesis of both familial and sporadic hemangioblastomas.http://deepblue.lib.umich.edu/bitstream/2027.42/110224/1/40478_2014_Article_167.pd
Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations
Objective The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH).
Participants A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrinologists, basic scientists, regulatory scientists, and participants from the pharmaceutical industry.
Evidence Current literature was reviewed for gaps in knowledge. Expert opinion was used to suggest studies required to address potential safety and efficacy issues.
Consensus process Following plenary presentations summarizing the literature, breakout groups discussed questions framed by the planning committee. Attendees reconvened after each breakout session to share group reports. A writing team compiled the breakout session reports into a draft document that was discussed and revised in an open forum on the concluding day. This was edited further and then circulated to attendees from academic institutions for review after the meeting. Participants from pharmaceutical companies did not participate in the planning, writing, or in the discussions and text revision on the final day of the workshop. Scientists from industry and regulatory agencies reviewed the manuscript to identify any factual errors.
Conclusions LAGH compounds may represent an advance over daily GH injections because of increased convenience and differing phamacodynamic properties, providing the potential for improved adherence and outcomes. Better methods to assess adherence must be developed and validated. Long-term surveillance registries that include assessment of efficacy, cost-benefit, disease burden, quality of life, and safety are essential for understanding the impact of sustained exposure to LAGH preparations
The role of molecular genetics in diagnosing familial hematuria(s)
Familial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN). A number of X-linked AS patients follow a milder course reminiscent of that of patients with heterozygous COL4A3/COL4A4 mutations and TBMN, while at the same time a significant subset of patients with TBMN and familial MH progress to chronic kidney disease (CKD) or end-stage kidney disease (ESKD). A mutation in CFHR5, a member of the complement factor H family of genes that regulate complement activation, was recently shown to cause isolated C3 glomerulopathy, presenting with MH in childhood and demonstrating a significant risk for CKD/ESKD after 40Â years old. Through these results molecular genetics emerges as a powerful tool for a definite diagnosis when all the above conditions enter the differential diagnosis, while in many at-risk related family members, a molecular diagnosis may obviate the need for another renal biopsy
Genetic and Pharmacological Inhibition of MicroRNA-92a Maintains Podocyte Cell Cycle Quiescence and Limits Crescentic Glomerulonephritis
Crescentic rapidly progressive glomerulonephritis (RPGN) represents the most aggressive form of acquired glomerular disease. While most therapeutic approaches involve potentially toxic immunosuppressive strategies, the pathophysiology remains incompletely understood. Podocytes are glomerular epithelial cells that are normally growth-arrested because of the expression of cyclin-dependent kinase (CDK) inhibitors. An exception is in RPGN where podocytes undergo a deregulation of their differentiated phenotype and proliferate. Here we demonstrate that microRNA-92a (miR-92a) is enriched in podocytes of patients and mice with RPGN. The CDK inhibitor p57Kip2 is a major target of miR-92a that constitutively safeguards podocyte cell cycle quiescence. Podocyte-specific deletion of miR-92a in mice de-repressed the expression of p57Kip2 and prevented glomerular injury in RPGN. Administration of an anti-miR-92a after disease initiation prevented albuminuria and kidney failure, indicating miR-92a inhibition as a potential therapeutic strategy for RPGN. We demonstrate that miRNA induction in epithelial cells can break glomerular tolerance to immune injury
Acromegaly caused by growth hormone-releasing hormone-producing tumors: long-term observational studies in three patients
We report on three newly diagnosed patients with extracranial ectopic GHRH-associated acromegaly with long-term follow-up after surgery of the primary tumor. One patient with a pancreatic tumor and two parathyroid adenomas was the index case of a large kindred of MEN-I syndrome. The other two patients had a large bronchial carcinoid. The first patient is still in remission now almost 22Â years after surgery. In the two other patients GHRH did not normalize completely after surgery and they are now treated with slow-release octreotide. IGF-I normalized in all patients. During medical treatment basal GH secretion remained (slightly) elevated and secretory regularity was decreased in 24Â h blood sampling studies. We did not observe development of tachyphylaxis towards the drug or radiological evidence of (growing) metastases. We propose life-long suppressive therapy with somatostatin analogs in cases with persisting elevated serum GHRH concentrations after removal of the primary tumor. Independent parameters of residual disease are elevated basal (nonpulsatile) GH secretion and decreased GH secretory regularity
Guidelines for histopathological specimen examination and diagnostic reporting of primary bone tumours
This review is intended to provide histopathologists with guidelines for clinical assessment, specimen handling and diagnostic reporting of benign and malignant primary bone tumours. Information from radiology, surgical, oncology and other clinical colleagues involved in the diagnosis and treatment of primary bone tumours should be properly assessed before undertaking a structured approach to specimen handling and histological reporting. This ensures that the information needed for planning appropriate treatment of these complex tumours is provided. Consistency in diagnostic evaluation with respect to both terminology and report content facilitates liaison at multidisciplinary bone tumour meetings and collaboration between cancer units and networks, as well as providing a common database for audit of the clinical, radiological and pathological aspects of bone tumours
- âŠ