315 research outputs found

    Cell-free (RNA) and cell-associated (DNA) HIV-1 and postnatal transmission through breastfeeding

    Get PDF
    <p>Introduction - Transmission through breastfeeding remains important for mother-to-child transmission (MTCT) in resource-limited settings. We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum.</p> <p>Materials and Methods - Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission.</p> <p>Results - There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33–4.59) vs. aHR 1.52 (95% CI, 1.17–1.96), respectively]. At 6 months, cell-free and cell-associated levels (per ml) in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-free than cell-associated levels [aHR 2.53 (95% CI 1.64–3.92) vs. 1.73 (95% CI 0.94–3.19), respectively].</p> <p>Conclusions - The findings suggest that cell-associated virus level (per ml) is more important for early postpartum HIV-1 transmission (at 6 weeks) than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal for 2015 of eliminating vertical transmission. More studies would further knowledge on mechanisms of HIV-1 transmission and help develop more effective drugs during lactation.</p&gt

    Population-Level Benefits from Providing Effective HIV Prevention Means to Pregnant Women in High Prevalence Settings

    Get PDF
    Background:HIV prevalence among pregnant women in Southern Africa is extremely high. Epidemiological studies suggest that pregnancy increases the risk of HIV sexual acquisition and that HIV infections acquired during pregnancy carry higher risk of mother-to-child transmission (MTCT). We analyze the potential benefits from extending the availability of effective microbicide to pregnant women (in addition to non-pregnant women) in a wide-scale intervention.Methods and Findings:A transmission dynamic model was designed to assess the impact of microbicide use in high HIV prevalence settings and to estimate proportions of new HIV infections, infections acquired during pregnancy, and MTCT prevented over 10 years. Our analysis suggests that consistent use of microbicide with 70% efficacy by 60% of non-pregnant women may prevent approximately 40% and 15% of new infections in women and men respectively over 10 years, assuming no additional increase in HIV risk to either partner during pregnancy (RRHIV/preg = 1). It may also prevent 8-15% MTCT depending on the increase in MTCT risk when HIV is acquired during pregnancy compared to before pregnancy (RRMTCT/preg). Extending the microbicides use during pregnancy may improve the effectiveness of the intervention by 10% (RRHIV/preg = 1) to 25% (RRHIV/preg = 2) and reduce the number of HIV infections acquired during pregnancy by 40% to 70% in different scenarios. It may add between 6% (RRHIV/preg = 1, RRMTCT/preg = 1) and 25% (RRHIV/preg = 2, RRMTCT/preg = 4) to the reduction in the residual MTCT.Conclusion:Providing safe and effective microbicide to pregnant women in the context of wide-scale interventions would be desirable as it would increase the effectiveness of the intervention and significantly reduce the number of HIV infections acquired during pregnancy. The projected benefits from covering pregnant women by the HIV prevention programs is more substantial in communities in which the sexual risk during pregnancy is elevated. © 2013 Dimitrov et al

    Chronic Intranasal Treatment with an Anti-Aβ30-42 scFv Antibody Ameliorates Amyloid Pathology in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    Amyloid-beta peptide (Aβ)-directed active and passive immunization therapeutic strategies reduce brain levels of Aβ, decrease the severity of beta-amyloid plaque pathology and reverse cognitive deficits in mouse models of Alzheimer's disease (AD). As an alternative approach to passive immunization with full IgG molecules, single-chain variable fragment (scFv) antibodies can modulate or neutralize Aβ-related neurotoxicity and inhibit its aggregation in vitro. In this study, we characterized a scFv derived from a full IgG antibody raised against the C-terminus of Aβ, and studied its passage into the brains of APP transgenic mice, as well as its potential to reduce Aβ-related pathology. We found that the scFv entered the brain after intranasal application, and that it bound to beta-amyloid plaques in the cortex and hippocampus of APP transgenic mice. Moreover, the scFv inhibited Aβ fibril formation and Aβ-mediated neurotoxicity in vitro. In a preventative therapeutic approach chronic intranasal treatment with scFv reduced congophilic amyloid angiopathy (CAA) and beta-amyloid plaque numbers in the cortex of APPswe/PS1dE9 mice. This reduction of CAA and plaque pathology was associated with a redistribution of brain Aβ from the insoluble fraction to the soluble peptide pool. Due to their lack of the effector domain of full IgG, scFv may represent an alternative tool for the treatment of Aβ-related pathology without triggering Fc-mediated effector functions. Additionally, our observations support the possibility that Aβ-directed immunotherapy can reduce Aβ deposition in brain vessels in transgenic mice

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Methods for the synthesis of qualitative research: a critical review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, a growing number of methods for synthesising qualitative research have emerged, particularly in relation to health-related research. There is a need for both researchers and commissioners to be able to distinguish between these methods and to select which method is the most appropriate to their situation.</p> <p>Discussion</p> <p>A number of methodological and conceptual links between these methods were identified and explored, while contrasting epistemological positions explained differences in approaches to issues such as quality assessment and extent of iteration. Methods broadly fall into 'realist' or 'idealist' epistemologies, which partly accounts for these differences.</p> <p>Summary</p> <p>Methods for qualitative synthesis vary across a range of dimensions. Commissioners of qualitative syntheses might wish to consider the kind of product they want and select their method – or type of method – accordingly.</p

    Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems

    Get PDF
    This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM): a multi-cohort machine learning study

    Get PDF
    BACKGROUND: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS: In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS: 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. INTERPRETATION: This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics. FUNDING: European Union's Horizon 2020 research and innovation programme, the European Union's Seventh Framework Programme (EUCLIDS), Imperial Biomedical Research Centre of the National Institute for Health Research, the Wellcome Trust and Medical Research Foundation, Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Grupos de Refeencia Competitiva, Swiss State Secretariat for Education, Research and Innovation

    Organic Geochemical Studies. I. Molecular Criteria for Hydrocarbon Genesis

    Get PDF
    In recent years the search for life-forms at the earliest periods of geological time has been continued not only at the morphological level but also at the molecular level. This has been possible as a result of the increase in the biochemical knowledge and with the advent of analytical techniques that are capable of describing the intimate molecular architecture of individual molecules in acute detail. The fundamental premises upon which this organic geochemical approach rest are the following: that certain molecules, possessing a characteristic structural skeleton, show a reasonable stability to degradation over long periods of geological time; that their structural specificity can be understood in terms of known biosynthetic sequences; and that their formation by any non-biological means is of negligible probability. In this manuscript it is proposed to critically re-examine these premises and to establish criteria whereby one can differentiate molecules derived from biological systems from those that have their origin in non-biological processes. The importance of establishing such criteria lies in the significance these criteria have in determining whether life exists, or has existed, on other planets. Within the very near future it may be possible to provide an initial answer to this question when the first lunar samples are returned to the earth for analysis
    • …
    corecore