7,614 research outputs found
Propagation of gravitational waves in multimetric gravity
We discuss the propagation of gravitational waves in a recently discussed
class of theories containing N >= 2 metric tensors and a corresponding number
of standard model copies. Using the formalism of gauge-invariant linear
perturbation theory we show that all gravitational waves propagate at the speed
of light. We then employ the Newman-Penrose formalism to show that two to six
polarizations of gravitational waves may exist, depending on the parameters
entering the equations of motion. This corresponds to E(2) representations N_2,
N_3, III_5 and II_6. We finally apply our general discussion to a recently
presented concrete multimetric gravity model and show that it is of class N_2,
i.e., it allows only two tensor polarizations, as it is the case for general
relativity. Our results provide the theoretical background for tests of
multimetric gravity theories using the upcoming gravitational wave experiments.Comment: 21 pages, no figures, journal versio
Stability and Quasinormal Modes of Black holes in Tensor-Vector-Scalar theory: Scalar Field Perturbations
The imminent detection of gravitational waves will trigger precision tests of
gravity through observations of quasinormal ringing of black holes. While
General Relativity predicts just two polarizations of gravitational waves, the
so-called plus and cross polarizations, numerous alternative theories of
gravity predict up to six different polarizations which will potentially be
observed in current and future generations of gravitational wave detectors.
Bekenstein's Tensor-Vector-Scalar (TeVeS) theory and its generalization fall
into one such class of theory that predict the full gamut of six polarizations
of gravitational waves. In this paper we begin the study of quasinormal modes
(QNMs) in TeVeS by studying perturbations of the scalar field in a spherically
symmetric background. We show that, at least in the case where superluminal
propagation of perturbations is not present, black holes are generically stable
to this kind of perturbation. We also make a unique prediction that, as the
limit of the various coupling parameters of the theory tend to zero, the QNM
spectrum tends to times the QNM spectrum induced by scalar
perturbations of a Schwarzschild black hole in General Relativity due to the
intrinsic presence of the background vector field. We further show that the QNM
spectrum does not vary significantly from this value for small values of the
theory's coupling parameters, however can vary by as much as a few percent for
larger, but still physically relevant parameters.Comment: Published in Physical Review
Complex Wave Numbers in the Vicinity of the Schwarzschild Event Horizon
This paper is devoted to investigate the cold plasma wave properties outside
the event horizon of the Schwarzschild planar analogue. The dispersion
relations are obtained from the corresponding Fourier analyzed equations for
non-rotating and rotating, non-magnetized and magnetized backgrounds. These
dispersion relations provide complex wave numbers. The wave numbers are shown
in graphs to discuss the nature and behavior of waves and the properties of
plasma lying in the vicinity of the Schwarzschild event horizon.Comment: 21 pages, 9 figures, accepted for publication Int. J. Mod. Phys.
On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle
The monitoring of a quantum-mechanical harmonic oscillator on which a classical force acts is important in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. This paper reviews the standard techniques for monitoring the oscillator, and introduces a new technique which, in principle, can determine the details of the force with arbitrary accuracy, despite the quantum properties of the oscillator. The standard method for monitoring the oscillator is the "amplitude-and-phase" method (position or momentum transducer with output fed through a narrow-band amplifier). The accuracy obtainable by this method is limited by the uncertainty principle ("standard quantum limit"). To do better requires a measurement of the type which Braginsky has called "quantum nondemolition." A well known quantum nondemolition technique is "quantum counting," which can detect an arbitrarily weak classical force, but which cannot provide good accuracy in determining its precise time dependence. This paper considers extensively a new type of quantum nondemolition measurement—a "back-action-evading" measurement of the real part X_1 (or the imaginary part X_2) of the oscillator's complex amplitude. In principle X_1 can be measured "arbitrarily quickly and arbitrarily accurately," and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the classical force. The authors describe explicit Gedanken experiments which demonstrate that X_1 can be measured arbitrarily quickly and arbitrarily accurately. In these experiments the measuring apparatus must be coupled to both the position (position transducer) and the momentum (momentum transducer) of the oscillator, and both couplings must be modulated sinusoidally. For a given measurement time the strength of the coupling determines the accuracy of the measurement; for arbitrarily strong coupling the measurement can be arbitrarily accurate. The "momentum transducer" is constructed by combining a "velocity transducer" with a "negative capacitor" or "negative spring." The modulated couplings are provided by an external, classical generator, which can be realized as a harmonic oscillator excited in an arbitrarily energetic, coherent state. One can avoid the use of two transducers by making "stroboscopic measurements" of X_1, in which one measures position (or momentum) at half-cycle intervals. Alternatively, one can make "continuous single-transducer" measurements of X_1 by modulating appropriately the output of a single transducer (position or momentum), and then filtering the output to pick out the information about X_1 and reject information about X_2. Continuous single-transducer measurements are useful in the case of weak coupling. In this case long measurement times are required to achieve good accuracy, and continuous single-transducer measurements are almost as good as perfectly coupled two-transducer measurements. Finally, the authors develop a theory of quantum nondemolition measurement for arbitrary systems. This paper (Paper I) concentrates on issues of principle; a sequel (Paper II) will consider issues of practice
Non-monotonic orbital velocity profiles around rapidly rotating Kerr-(anti-)de Sitter black holes
It has been recently demonstrated that the orbital velocity profile around
Kerr black holes in the equatorial plane as observed in the locally
non-rotating frame exhibits a non-monotonic radial behaviour. We show here that
this unexpected minimum-maximum feature of the orbital velocity remains if the
Kerr vacuum is generalized to the Kerr-de Sitter or Kerr-anti-de Sitter metric.
This is a new general relativity effect in Kerr spacetimes with non-vanishing
cosmological constant. Assuming that the profile of the orbital velocity is
known, this effect constrains the spacetime parameters.Comment: 9 pages, 4 figures, accepted for Class. Quant. Gra
Mitochondrial Dna Replacement Versus Nuclear Dna Persistence
In this paper we consider two populations whose generations are not
overlapping and whose size is large. The number of males and females in both
populations is constant. Any generation is replaced by a new one and any
individual has two parents for what concerns nuclear DNA and a single one (the
mother) for what concerns mtDNA. Moreover, at any generation some individuals
migrate from the first population to the second.
In a finite random time , the mtDNA of the second population is completely
replaced by the mtDNA of the first. In the same time, the nuclear DNA is not
completely replaced and a fraction of the ancient nuclear DNA persists. We
compute both and . Since this study shows that complete replacement of
mtDNA in a population is compatible with the persistence of a large fraction of
nuclear DNA, it may have some relevance for the Out of Africa/Multiregional
debate in Paleoanthropology
Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm
Abstract The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17-19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1-0.5fce (theelectron equatorial gyrofrequency), with a peak spectral density ∼10-4 nT 2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102-103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation. Key Points Initial RBSP correlated data of chorus waves and relativistic electron fluxes A realistic simulation to examine effect of chorus on relativistic electron flux Chorus yields huge increases inelectron flux rapidly, consistent with data
The Pulsed Neutron Beam EDM Experiment
We report on the Beam EDM experiment, which aims to employ a pulsed cold
neutron beam to search for an electric dipole moment instead of the established
use of storable ultracold neutrons. We present a brief overview of the basic
measurement concept and the current status of our proof-of-principle Ramsey
apparatus
Domain Wall Depinning in Random Media by AC Fields
The viscous motion of an interface driven by an ac external field of
frequency omega_0 in a random medium is considered here for the first time. The
velocity exhibits a smeared depinning transition showing a double hysteresis
which is absent in the adiabatic case omega_0 --> 0. Using scaling arguments
and an approximate renormalization group calculation we explain the main
characteristics of the hysteresis loop. In the low frequency limit these can be
expressed in terms of the depinning threshold and the critical exponents of the
adiabatic case.Comment: 4 pages, 3 figure
The Casimir Effect from a Condensed Matter Perspective
The Casimir effect, a key observable realization of vacuum fluctuations, is
usually taught in graduate courses on quantum field theory. The growing
importance of Casimir forces in microelectromechanical systems motivates this
subject as a topic for graduate many-body physics courses. To this end, we
revisit the Casimir effect using methods common in condensed matter physics. We
recover previously derived results and explore the implications of the
analogies implicit in this treatment.Comment: Accepted for Publication in American Journal of Physic
- …