5,570 research outputs found

    Head-on infall of two compact objects: Third post-Newtonian Energy Flux

    Full text link
    Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.Comment: 25 pages, 2 figures, This version includes the changes appearing in the Erratum published in Phys. Rev.

    Prospects for direct detection of circular polarization of gravitational-wave background

    Get PDF
    We discussed prospects for directly detecting circular polarization signal of gravitational wave background. We found it is generally difficult to probe the monopole mode of the signal due to broad directivity of gravitational wave detectors. But the dipole (l=1) and octupole (l=3) modes of the signal can be measured in a simple manner by combining outputs of two unaligned detectors, and we can dig them deeply under confusion and detector noises. Around f~0.1mHz LISA will provide ideal data streams to detect these anisotropic components whose magnitudes are as small as ~1 percent of the detector noise level in terms of the non-dimensional energy density \Omega_{GW}(f).Comment: 5 pages, 1 figure, PRL in pres

    Deconstructing double-barred galaxies in 2D and 3D. II. Two distinct groups of inner bars

    Full text link
    The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of: i) two-dimensional multi-component photometric decompositions, and ii) three-dimensional statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length vs. ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed, or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.Comment: 14 pages, 8 figures, 1 table. Accepted for publication in MNRA

    Dynamic black holes through gravitational collapse: Analysis of multipole moment of the curvatures on the horizon

    Full text link
    We have investigated several properties of rapidly rotating dynamic black holes generated by gravitational collapse of rotating relativistic stars. At present, numerical simulations of the binary black hole merger are able to produce a Kerr black hole of J_final / M_final^2 up to = 0.91, of gravitational collapse from uniformly rotating stars up to J_final / M_final^2 ~ 0.75, where J_final is the total angular momentum and M_final the total gravitational mass of the hole. We have succeeded in producing a dynamic black hole of spin J_final / M_final^2 ~ 0.95 through the collapse of differentially rotating relativistic stars. We have investigated those dynamic properties through diagnosing multipole moment of the horizon, and found the following two features. Firstly, two different definitions of the angular momentum of the hole, the approximated Killing vector approach and dipole moment of the current multipole approach, make no significant difference to our computational results. Secondly, dynamic hole approaches a Kerr by gravitational radiation within the order of a rotational period of an equilibrium star, although the dynamic hole at the very forming stage deviates quite far from a Kerr. We have also discussed a new phase of quasi-periodic waves in the gravitational waveform after the ringdown in terms of multipole moment of the dynamic hole.Comment: 13 pages with 19 figures, revtex4-1.cls. Accepted for publication in the Physical Review

    Energetic Quantum Limit in Large-Scale Interferometers

    Get PDF
    For each optical topology of an interferometric gravitational wave detector, quantum mechanics dictates a minimum optical power (the ``energetic quantum limit'') to achieve a given sensitivity. For standard topologies, when one seeks to beat the standard quantum limit by a substantial factor, the energetic quantum limit becomes impossibly large. Intracavity readout schemes may do so with manageable optical powers.Comment: Revised version; to be published in Proceedings of the 1999 Edoardo Amaldi Conference on Gravitational Waves; 11 pages including figures; manuscript is RevTex; figures are .eps; an AIP style file is include

    Electromagnetic radiation produces frame dragging

    Full text link
    It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi--Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super--Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review

    A stochastic template placement algorithm for gravitational wave data analysis

    Get PDF
    This paper presents an algorithm for constructing matched-filter template banks in an arbitrary parameter space. The method places templates at random, then removes those which are "too close" together. The properties and optimality of stochastic template banks generated in this manner are investigated for some simple models. The effectiveness of these template banks for gravitational wave searches for binary inspiral waveforms is also examined. The properties of a stochastic template bank are then compared to the deterministically placed template banks that are currently used in gravitational wave data analysis.Comment: 14 pages, 11 figure

    Gravitational Wave Background from Phantom Superinflation

    Full text link
    Recently, the early superinflation driven by phantom field has been proposed and studied. The detection of primordial gravitational wave is an important means to know the state of very early universe. In this brief report we discuss in detail the gravitational wave background excited during the phantom superinflation.Comment: 3 pages, 2 eps figures, to be published in PRD, revised with published version, refs. adde

    Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors

    Get PDF
    We report for the first time general geometrical expressions for the angular resolution of an arbitrary network of interferometric gravitational-wave (GW) detectors when the arrival-time of a GW is unknown. We show explicitly elements that decide the angular resolution of a GW detector network. In particular, we show the dependence of the angular resolution on areas formed by projections of pairs of detectors and how they are weighted by sensitivities of individual detectors. Numerical simulations are used to demonstrate the capabilities of the current GW detector network. We confirm that the angular resolution is poor along the plane formed by current LIGO-Virgo detectors. A factor of a few to more than ten fold improvement of the angular resolution can be achieved if the proposed new GW detectors LCGT or AIGO are added to the network. We also discuss the implications of our results for the design of a GW detector network, optimal localization methods for a given network, and electromagnetic follow-up observations.Comment: 13 pages, for Phys. Rev.

    GravEn: Software for the simulation of gravitational wave detector network response

    Full text link
    Physically motivated gravitational wave signals are needed in order to study the behaviour and efficacy of different data analysis methods seeking their detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software package that simulates the sampled response of a gravitational wave detector to incident gravitational waves. Incident waves can be specified in a data file or chosen from among a group of pre-programmed types commonly used for establishing the detection efficiency of analysis methods used for LIGO data analysis. Every aspect of a desired signal can be specified, such as start time of the simulation (including inter-sample start times), wave amplitude, source orientation to line of sight, location of the source in the sky, etc. Supported interferometric detectors include LIGO, GEO, Virgo and TAMA.Comment: 10 Pages, 3 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill
    corecore