36 research outputs found

    Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis

    Get PDF

    Identification of novel SALMFamide neuropeptides in the starfish Marthasterias glacialis

    Get PDF
    Abstract The SALMFamides are a family of neuropeptides found in species belonging to the phylum Echinodermata and which act as muscle relaxants. The first two members of this family to be identified were both isolated from the starfishes Asterias rubens and Asterias forbesi and are known as S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide). However, little is known about the occurrence and characteristics of SALMFamide neuropeptides in other starfish species. Here we report the identification of four SALMFamide neuropeptides in the starfish Marthasterias glacialis: GFNSALMFamide (S1), SGPYSMTSGLTFamide (MagS2), AYHSALPFamide (MagS3), and AYQTGLPFamide (MagS4). Analysis of the effects of MagS2 and MagS3 on cardiac stomach preparations from Asterias rubens revealed that both peptides cause dose-dependent relaxation, consistent with previous studies using S1 and S2. The identification of four SALMFamide neuropeptides in Marthasterias glacialis provides new insights into the diversity and phylogenetic distribution of SALMFamide neuropeptides in the class Asteroidea of the phylum Echinodermata. In particular, the identification of MagS3 and MagS4, in addition to S1 and the S2-like peptide MagS2, has revealed a greater diversity of SALMFamide neuropeptides occurring in a starfish species than any previous studies

    Simplicity in Visual Representation: A Semiotic Approach

    Full text link
    Simplicity, as an ideal in the design of visual representations, has not received systematic attention. High-level guidelines are too general, and low-level guidelines too ad hoc, too numerous, and too often incompatible, to serve in a particular design situation. This paper reviews notions of visual simplicity in the literature within the analytical framework provided by Charles Morris' communication model, specifically, his trichotomy of communication levels—the syntactic, the semantic, and the pragmatic. Simplicity is ultimate ly shown to entail the adjudication of incompatibilities both within, and between, levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68281/2/10.1177_105065198700100103.pd

    The caudal regeneration blastema is an accumulation of rapidly proliferating stem cells in the flatworm Macrostomum lignano

    Get PDF
    Background: Macrostomum lignano is a small free-living flatworm capable of regenerating all body parts posterior of the pharynx and anterior to the brain. We quantified the cellular composition of the caudal-most body region, the tail plate, and investigated regeneration of the tail plate in vivo and in semithin sections labeled with bromodeoxyuridine, a marker for stem cells (neoblasts) in S-phase. Results: The tail plate accomodates the male genital apparatus and consists of about 3,100 cells, about half of which are epidermal cells. A distinct regeneration blastema, characterized by a local accumulation of rapidly proliferating neoblasts and consisting of about 420 cells (excluding epidermal cells), was formed 24 hours after amputation. Differentiated cells in the blastema were observed two days after amputation (with about 920 blastema cells), while the male genital apparatus required four to five days for full differentiation. At all time points, mitoses were found within the blastema. At the place of organ differentiation, neoblasts did not replicate or divide. After three days, the blastema was made of about 1420 cells and gradually transformed into organ primordia, while the proliferation rate decreased. The cell number of the tail plate, including about 960 epidermal cells, was restored to 75% at this time point. Conclusion: Regeneration after artificial amputation of the tail plate of adult specimens of Macrostomum lignano involves wound healing and the formation of a regeneration blastema. Neoblasts undergo extensive proliferation within the blastema. Proliferation patterns of S-phase neoblasts indicate that neoblasts are either determined to follow a specific cell fate not before, but after going through S-phase, or that they can be redetermined after S-phase. In pulse-chase experiments, dispersed distribution of label suggests that S-phase labeled progenitor cells of the male genital apparatus undergo further proliferation before differentiation, in contrast to progenitor cells of epidermal cells. Mitotic activity and proliferation within the blastema is a feature of M. lignano shared with many other regenerating animals

    Coelomocytes and post-traumatic response in the common sea star Asterias rubens

    No full text
    Coelomocytes are recognized as the main cellular component of the echinoderm immune system. They are the first line of defense and their number and type can vary dramatically during infections or following injury. Sea stars have been used as a model system to study the regeneration process after autotomy or predation. In the present study we examined the cellular and biochemical responses of coelomocytes from the European sea star Asterias rubens to traumatic stress using immunochemical and biochemical approaches. In terms of trauma and post-traumatic stress period, here we consider the experimental arm amputation and the repair phase involved in the first 24 hours post-amputation, which mimicked a natural predation event. Four cell morphotypes were distinguishable in the coelomic fluid of both control and post-traumatic-stressed animals (phagocytes, amoebocytes, vibratile cells, hemocytes), but phagocytes were the major components, accounting for about 95% of the total population. Thus, the effects measured relate to the overall population of coelomocytes. A modest increase in the total number of freely circulating coelomocytes was observed 6 hours post-amputation. Interestingly, a monoclonal antibody (McAb) to a sea urchin embryo adhesion protein (toposome) cross-reacted with isolated sea star coelomocytes and stained the coelomic epithelium of control animals with an increase in trauma-stressed arms. In addition, coelomocytes from trauma-stressed animals showed a time-dependent increase in Hsp70 levels, as detected by both immunocytochemistry and immunoblotting within 24 hours after arm tip amputation, with a peak at 6 hours after amputation. Our findings indicate a clear role for coelomocytes and classic stress molecules in the post-traumatic stress associated with the early repair phase of regeneration

    Development of swimming behaviour in the larva of the ascidian Ciona intestinalis

    No full text
    The aim of this study was to characterize the swimming behaviour of C. intestinalis larvae during the first 6 h after hatching by measuring tail muscle field potentials. This recording method allowed a quantitative description of the responses of the larva under light and dark conditions. Three different larval movements were distinguished by their specific frequencies: tail flicks, 'spontaneous' swimming, and shadow response, or dark induced activity, with respective mean frequencies of about 10, 22 and 32 Hz. The shadow response develops at about 1.5 h post hatching (h.p.h.). The frequency of muscle potentials associated with this behaviour became higher than those of spontaneous swimming activity, shifting from 20 to 30 Hz, but only from about 2 associated with this behaviour became higher than those of spontaneoush. p. h. onwards. Swimming rate was influenced positively for about 25 s after the beginning of the shadow response. Comparison of swimming activity at three different larval ages (0-2, 2-4 and 4-6 h.p.h.) showed that Ciona larvae swim for longer periods and more frequently during the first hours after hatching. Our results provide a starting point for future studies that aim to characterize the nervous control of ascidian locomotion, in wild-type or mutant larvae

    FMRFamide-like Immunoreactivity in the Nervous System of the Starfish Asterias rubens

    No full text
    Volume: 177Start Page: 141End Page: 14

    Near-future levels of ocean acidification reduce fertilization success in a sea urchin

    Get PDF
    SummaryAlthough it is widely believed that seawater is chemically well-buffered, CO2-induced acidification of the world's oceans threatens the viability of many species [1–3]. Research to date has focused on the responses of adult stages of calcifying taxa to gross pH changes relevant for the years 2200–2400 [3,4]. We investigated the consequences of exposure of gametes and larvae of the sea urchin Heliocidaris erythrogramma to CO2-induced acidification by −0.4 pH units (the upper limit of predictions for the year 2100 [5]), and found statistically significant reductions in sperm swimming speed and percent sperm motility. We predicted the effects of these changes using an established model [6], and tested fertilization success experimentally in assays using the same gametes and pH treatments. Observed reductions in fertilization success corresponded closely to model predictions (24% reduction). If general, these findings have important implications for the reproductive and population viability of broadcast spawning marine species in the future acidified ocean
    corecore