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Abstract 

Although mutations in the huntingtin gene (HTT) due to polyQ expansion cause 

neuropathology in humans (Huntington’s disease; HD), the normal function(s) of the gene 

and its protein (HTT) remains obscure. With new information from recently sequenced 

invertebrate genomes, the study of new animal models opens the possibility of a better 

understanding of HTT function and its evolution. To these ends, we studied huntingtin 

expression pattern and dynamics in the invertebrate chordate Ciona intestinalis. Ciona 

huntingtin (Ci-HTT) shows a biphasic expression pattern during larval development and 

prior to metamorphosis.  A single form of huntingtin protein product is present until the 

early larval stages, at which time two different mass proteins become evident in the 

metamorphically competent larva.  An antibody against Ci-HTT labeled 50 cells in the 

trunk mesenchyme regions in prehatching and hatched larvae and probably represents the 

distribution of the light-form of the protein. Dual labeling with anti-Ci-HTT and anti 

aldoketoreductase confirmed the presence of Ci-HTT in mesenchyme cells. Suppression 

of Ci-HTT RNA by a Morpholino oligo-nucleotide reduced the number and apparent 

mobility of Ci-HTT positive cells.   In Ciona, HTT expression has a dynamic temporal and 

spatial expression pattern that in ontogeny precedes metamorphosis.  Although our results 

may reflect a derived function for the protein in pre- and post- metamorphic events in 

Ciona, we also note that as in vertebrates, there is evidence for multiple differential 

temporal expression, indicating that this protein probably has multiple roles in ontogeny 

and cell migration.  
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Introduction 

Genes coding for the huntingtin protein have been found in all vertebrate and 

invertebrate genomes examined so far;  Huntingtin genes (HTT) are present in vertebrates 

including mammals (Schmitt et al. 1995, Wood et al. 1996,  Matsuyama et al. 2000) and 

fish (Baxendale et al. 1995, Karlovich et al. 1998). In invertebrates, homologues have 

been identified in non-vertebrate chordates such as  amphioxus (Candiani et al. 2007),  

ascidians (Gissi et al. 2006), and in ‘basal’ deuterostomes such as  sea urchins  

(Kauffman et al. 2003,  Sodergren et al. 2006, Tartari et al. 2008). Homologues are also 

present in arthropods (Li et al. 1999), and nematodes (Wormbase sequence name  

F21G4.6) pointing to the universal conservation of the gene across phylogeny (see  the 

following reviews;  Sipione & Cattaneo 2001,  Zuccato et al. 2010). 

Despite this conservation, a detailed analysis of the protein reveals important 

phylogenetic differences in parts of the sequence. In vertebrates,  there is an extensive 

poly- Q region in the n-terminus of HTT (expansions of which are known to cause 

pathology in humans (Anon 1993)). In all of the non-vertebrate animals so far examined, 

this region in the n-terminus is greatly reduced.  In sea urchin (a basal deuterostome),  

HTT was detected in the genome (Kauffman et al. 2003, Sodergren et al. 2006, Idris 

2007),  was subsequently cloned (Tartari et al. 2008),  and revealed to consist of a single 

Poly-Q (consisting of two repeats).   A similar state of affairs exists in the amphioxus 

sequence that is considered to be one of the most  ‘basal’ living invertebrate chordates 

(Candiani et al. 2007).   It was therefore notable that within deuterostomes,  Ciona 

intestinalis lacks  two poly-Q ‘repeats found in other chordates and invertebrates. Thus,  it  

is likely that the two repeats in Amphioxus and Sea Urchin represent the ‘basal’ condition 

while Ciona has lost the ancestral Poly-Q repeat pattern (Idris 2007, Tartari et al. 2008). 

This hypothesis is partly based on the recent finding that within in the chordate phylum, 

tunicates (including ascidians) are likely to represent a sister group of vertebrates (Delsuc 

et al. 2006). 

Further clues to the function of a protein may be found in its tissue specific 

distribution both within organisms, across development and by examining its evolutionary 
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trajectories. Despite its pathological effects in the nervous system, human huntingtin RNA 

is found in almost every organ and tissue type,  although the expression level in tissues 

and at different developmental stages varies widely (Strong et al. 1993,  Li et al. 1993,  

Landwehrmeyer et al. 1995,  Schmitt et al. 1995).  In mammals a high copy level was 

found in nerve ganglia, parathyroid and lymph nodes, whereas minimal expression was 

found in vascular and thymus tissue (NCBI UniGene UGID 909197, Hs.518450 

www.ncbi.nlm.nih.gov).  In invertebrates,  expression data  indicates that huntingtin mRNA 

is confined to non-neural tissues in flies and sea urchins(Kauffman et al. 2003), though it is 

also expressed in certain neurons in mature Aplysia californica (Moroz et al. 2006) and in  

both the neural tube and non-neural CNS cells of Amphioxus (Candiani et al. 2007).  

The above considerations indicated  that Ciona may represent at ‘minimal’ or 

derived model with which  to study the function of HTT in a chordate and it seemed to us  

desirable to assess the function of the protein better to obtain a more complete picture of 

HTT evolution.  To this end, we examined the expression pattern and dynamics of 

huntingtin in Ciona.  We found that HTT has a dynamic temporal and spatial expression 

pattern in which one form of the protein is most evident in a population of mesenchyme –

like cells before metamorphosis.  Although these observations may reflect a derived state 

for the protein in pre- and post- metamorphic events in Ciona, we also note that as in 

vertebrates, there is evidence for multiple roles of the protein.   
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Materials and Methods 

In situ, Immunohistochemistry and Western blotting of huntingtin 

Adult Ciona intestinalis were collected from the Bay of Naples Italy and the 

Gullmarn Fjord Sweden in the vicinity of the Sven Lovén Centre for Marine Sciences, 

Kristineberg. They were maintained in tanks with running local sea water until use. 

Metaphase I arrested oocytes and spermatozoa were collected from different animals and 

fertilizated by mixing gametes in filtered seawater. Embryos were observed with a 

stereomicroscope and embryos of appropriate stages were identified using the 

morphological criteria reported by Chiba et al. (S. Chiba et al. 2004).  Embryos were fixed 

in 4% paraformaldehyde for whole-mount In situ hybridization and immuno histochemistry; 

Samples were pelleted by centrifuging at 500 rpm and frozen for RNA and protein 

extraction. Each in-vivo experiment was performed using more than 500 embryos or 

larvae and repeated at least three times to confirm the results. 

Total RNA isolated from the brain of adult Ciona using TRIzol reagent (Sigma, 

Milan, Italy) was used in preparing probes for the in situ hybridization using gene specific 

primers (Supplementary  Table 2) from the cDNA synthesized using Random hexamers 

(Invitrogen, Milan, Italy). Four different probes of varying length at different regions of the 

huntingtin gene were used for the analysis. The probes were cloned in pCR 2.1-TOPO 

DUAL vector (Invitrogen, Milan, Italy) and in vitro transcription was performed for the 

synthesis of DIG labeled sense and anti-sense probes using DIG-RNA labelling kit 

(Boehringer, Mannheim, Germany). The synthesized probe was used at an appropriate 

concentration for the whole mount in situ hybridization on seven different stages of  

development, on sections such as the sections of brain complex.  

Total proteins were extracted from embryos of different development stages and 

tissues using the BioRad Ready Prep Protein Extraction Kit (BioRad, CA, USA) for the 

western blot. Western blot, whole mount immunohistochemistry and Immuno 

histochemistry on sections were performed using the two different custom made Ciona 

Huntingtin protein sequence specific primary polyclonal antibodies (MCA and LCA specific 

for the peptide region 99-113 NH2-NSKILVELYKEINKKN-COOH and 1409-1422 NH2-
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EKWKKYSRQVADV-COOH respectively from PRIMM srl, Milano, Italy). Western blots 

were performed using a 500 mg of total protein, Whole mount immuno histochemistry was 

performed on the dechorionated larva and Immuno histochemistry on tissue sections were 

performed on  Brain complex tissue sections of 5 micron thickness using a Leica 

microtome. 

Northern blot Assay 

Total RNA of 10 μg from the mix of embryonic stages, larval stages and brain 

complex tissues was electrophoretically separated in a denaturating 0.8% Agarose gel 

containing 6% formaldehyde. The electrophoresis was performed for the different RNA 

samples, denatured at 90°C along with an equal volume of sample loading buffer and 0.5 

μl ethidium bromide for 30 hours. The samples were run along with ssRNA ladder (NEB 

Biolabs, Hertfordshire, UK) under uniform power at 60 mA. Separated RNA samples in the 

gel were transferred by the capillary method to a nylon membrane (Hybond N+, 

Amersham Pharmacia, Uppsala, Sweden) overnight using 5XSSC buffer and UV cross 

linked. Pre-hybridization of the membrane was performed in DIG¬Easy-Hyb buffer (Roche 

Applied Science, Mannheim, Germany) at 55°C for 1 hour. Then,  hybridization of the 

huntingtin gene on the membrane was performed using the cocktail mixture of antisense 

DIG labeled RNA probes under denaturating conditions. The hybridization was performed 

for 16 hours at 55°C and washed with varying stringency. The RNA-RNA hybrid on the 

membrane was detected using antiDIG-AP conjugate (diluted 1:2000) and BM Purple AP 

substrate precipitating kit  (Roche Applied Science, Mannheim, Germany). The colour was 

developed by 20 minutes of incubation in  the dark and material was washed briefly in 

distilled water to stop the reaction. 

 

Real time Quantitative PCR   

 To estimate the huntingtin gene copy number during development and in different 

tissues of  adult Ciona, total RNA was extracted from the seven different developmental 

stages and tissues of Ciona intestinalis. cDNA was synthesized from 1 µg of total RNA 

using random hexamers. The RT-PCR was performed using SYBR green master Mix 
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(Applied Biosystems, CA, USA) according to the manufacturer’s protocol. Four different 

sets of huntingtin specific primers, specific for N, Mid 1, Mid 2 and C terminal regions of 

the Huntingtin gene and three sets of primers towards house- keeping genes like GAPDH 

and Ribosomal protein 27 and 18 as controls were used for PCR. The relative estimation 

of the transcript for different developmental stages and tissues were calculated from the 

relative estimation of Ct values of the target gene in comparison to the reference gene. 

Estimation of the quantification was also compared using the software called REST MCS 

2006 (www.rest.gene-quantification.info). The Ct values were normalized; standard 

deviation and Delta Ct were calculated as per the formula of relative quantification using 

the control as the reference marker. Then, Delta Ct was calculated and plotted as a bar 

chart for the relative estimation of the level of transcript at the each stage and  tissue type. 

The different stages and tissues on which the real time assay was performed were 

Gastrula, Neurula, Tailbud, Early larva, Late larva, Early juvenile, Late juvenile, 1 week 

adult, ganglion, neural gland, heart, muscle, gut and egg.  

Gene suppression functional study 

Gene suppression of  huntingtin in Ciona intestinalis was performed by the 

microinjection of Morpholino in the dividing embryos.  Eggs and sperm were obtained 

surgically from the gonoduct of different animals and kept in normal sea water at 18°C until 

dechorionation. Chemical dechorionation was performed on the eggs to remove the 

vitelline coat (Chorion) just before the fertilization and injection. Eggs were incubated in 

1% sodium thioglycolate with 0.05% Pronase E (Protease type XIV Bacterial from 

Streptomycin griseous – P5147 – Sigma Aldrich, Milan, US) in filtered sea water (FSW) 

(pH 10.0) in agarose coated dishes for 5-6 minutes. After two washes in FSW, the eggs 

were fertilized. The inseminated oocytes were washed twice with FSW to remove excess 

sperm and to avoid polyspermy. The microinjection of the Morpholino was then performed 

on the inseminated  eggs until  the first cell division (40 minutes). The experiment was 

later modified with injection of Morpholino into dechorionated eggs followed by the 

fertilization with diluted sperm (conc. 1×106/ml) to obtain uniformity of development. The 

second modified method was more suitable and convenient  for  microinjection and  

development.  
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Microinjection was carried out as described previously by Satou et al., (Satou et al. 2001). 

50 to 250 fM of Morpholino were injected along with 0.5% Rhodamine dye. The 25mer 

antisense oligonucleotide 5’-TGACAGACTTGACTAACTT TTCCAT-3’ complementary to 

the huntingtin ITS (Initiation Transcription Site) region was made to order (Gene Tools, 

LLC, OR, USA). The control for the anti-sense morpholino oligonucleotide was 

synthesized as 5 mis-pair of the Morpholino oligonucleotide of the same length with the 

sequence 5’-TGAGAGAGTTCACTAAGTTTTCGAT-3’. The 300 nM Morpholino was 

diluted with sterile water to obtain the working dilution. The Morpholinos were injected 

using a micropipette prepared by pulling capillary tubing (Microcaps of Drummond Sci. 

Co., PA, USA) with an outer diameter of 1 mm, using a microelectrode puller Sutter P87 

with Heat 760, pull 130, velocity 30 and Pull 130. About 5 – 10% cell volume was injected 

into the each of the dechorionated eggs. The microinjection was aided by stacking the 

dechorionated eggs against a holding pipette in a dish that  was coated and dried using 

10% BSA. The development of Morpholino injected embryos and their  controls were 

monitored continuously during development. The embryos that developed into larvae and 

early rotation stage juveniles  after microinjection were fixed in 4% PFA for immune- 

histochemical analysis.  

Imaging 

Following  in situ hybridization on the whole mount and sections, material  was imaged 

using the Axiophot inverted fluorescence microscope (Zeiss, Gottingen, Germany) using 

10X, 20X and 40 X lens. For the immune- labeling, the sections and whole mount material  

were imaged using a 20X, 40X normal and 100X oil-immersion lens on a laser-scanning 

confocal microscope (Carl Zeiss micro imaging GmbH, Gottingen, Germany). The sections 

were viewed using the FITC/Rhodamine settings (HFT UV/488/543/633) with 30% laser 

power. The images were scanned at 500-530 nm for the FITC signal and the Rhodamine 

signal at 565-615nm. The image was calibrated against white light to normalize 

background fluorescence against control in every case. 
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Results  

Huntingtin gene expression pattern during larval development and in adult tissues 

Embryonic development 

Huntingtin RNA was  expressed in all the developmental stages of Ciona, from 

unfertilized eggs, through larval stages to adults with significant differences in the level of 

expression of the gene at different stages. Examination of the pattern revealed that there 

were  different levels of expression in different cell types (Figures 1 and 2). The antisense 

probes against the coding region of the huntingtin gene, between exon 25 till 29 of 551 

bps size (mid-region 1,  probe 1) and between exon 28 till 33 of 560 bps (mid-region 2, 

probe 2) both showed a positive signal. Sense probes and two other antisense probes, C 

terminal HD and N terminal HD, did not show any staining (Figures 1 and  2). The In situ 

expression of the huntingtin gene was found from the four cell stage onwards. In  64, 110-

cell  and gastrula stages, expression of the gene was  symmetrical in cells that give rise to;  

the nervous system (A8.7, A8.8, & A 8.15), mesenchyme cells (B8.5 and B7.7), TLCs 

(Trunk lateral Cells, A 7.6),   Neural tube (A 8.5),       notochord  (B 8.6) and muscle 

(A8.61) (Figure 1). The expression of the huntingtin gene in the nervous system and 

mesenchyme was also confirmed in the neurula and tailbud stages where  Huntingtin 

expression was revealed as a distinct cross-like pattern with the most significant 

concentrations in the mesenchyme region and less obviously in the neural tube (Figure 1).  

Expression of the huntingtin gene in the hatched or pre-hatched larva was found in the 

larval ‘head’ as faint spots (Figure 2) and was  present in the sensory vesicle near the 

ocellus and otolith (with the  signal absent in the  sense controls). Positive signals were 

also seen as distinct spots in the region of the TLCs. Metamorphosed early rotation stage 

juveniles also showed a very faint signal (Figure 2) in the developing gut and heart. 

Adult tissues  

 

 Localization of the huntingtin gene expression in adult Ciona nervous system was 

confirmed by in situ hybridization on  sections from the Ciona neural complex.  The 

huntingtin gene was expressed in the neural gland (NG), cerebral ganglion (CG) and 
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dorsal tubercle (DT) (Figure 3). In the ganglion (CG),    there  was a positive punctuate 

signal around the cortex. This staining pattern confirms the presence of the gene in the 

cell bodies of the neurons of the cerebral ganglion and absence of the signal in the core 

(which consists mainly of neuropile Figure 3, E). The absence of a positive signal with the 

sense probe in the ganglion tissues confirmed that the pattern was due to the huntingtin 

gene. No conclusions could be drawn about the potential expression in the ciliated duct as 

there was a strong staining of duct cells in both test and controls.  

 

Quantitative analysis of the HTT expression based on Real time PCR assay.  

 

  To better understand the changes in expression during development and in 

different tissues, we carried out a real-time PCR (RT-PCR) analysis. Ciona huntingtin 

expression was found in almost all of the embryonic stages and adult tissues, but the copy 

levels between tissues and stages were significantly different. The Ct value obtained from 

the target (C-terminal Huntingtin gene) and a control reference gene RPS27A (Olinski et 

al. 2006) were compared to give normalized expression values (Figure 4, Supplementary 

Table 1).  The highest transcript number was found in the neural gland (NG) of the adult 

followed by lower levels in other tissues. In the adult, a greater number of transcripts were 

found in the neural gland than in the cerebral ganglion (CG). When the whole brain was 

considered (brain is  equivalent to the CG,NG, ciliary duct and supporting tissues 

together),  expression was lower than in the NG and CG.   Expression was also found in 

relatively low levels in the gut and heart and was barely detectable in mantle muscle.  In 

the different embryonic stages of the larva,  the copy number increased until the neurula 

stage and then decreased thereafter.  The expression level of HTT in the egg presumably 

represents maternal huntingtin RNA (Figure 4).  

Transcript dynamics in embryo development and adult tissues  
 
Northern blot assays for Ciona intestinalis huntingtin transcripts at the early gastrula stage 

showed a single mass of approximately 12.5 Kbps. From the larval stage onwards,  two dif

ferent transcripts of 12.5 and 10 Kbps were detected. The brain complex of adult  
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Ciona intestinalis also expressed two transcripts (Figure S1).The 12 kbps transcript is equi

valent to the full length huntingtin gene (8847bps) along with the noncoding 5’ and 3’ UTR 

of the gene, The transcript  of around 10 kbps could represent the huntingtin gene 

with only 50 exons (7108bps) and the 5’UTR. 

 

Protein expression in larval and adult stages 

 

 Next we followed the expression of the huntingtin protein at different stages using 

Western blotting and Immunocytochemistry (Figure 5  and Figure 6). HTT protein 

expression for different embryonic developmental stages with Western blots showed two 

different patterns using the MCA antibody (specific to the amino terminal). Embryonic 

development until the larval stage showed a single form of HTT of 300 KDa and two forms 

from the larval stage onwards of 220 and 300 KDa, which was also present in 3 week old 

adults (Figure 5). The LCA antibody did not detect any protein product. The 220 KDa 

product produced consistently stronger staining  when it was present,  and it thus seems 

likely that this fraction of the protein is that which is stained in the whole mounts 

(discussed in the next sections).  As the heavier transcript  was present in all the tissues,  

the fact that in  tissue sections and whole mounts the pattern reflected the appearance of 

the lighter band reinforced  this possibility. Dissection of adult tissues allowed a more 

detailed assessment of the tissue -specific distribution of huntingtin. In the brain, gut, 

ovaries and muscle, the huntingtin protein was present as a single 300 kDa band (Figure 

5). The amount of protein in the muscle tissue was lower than in the brain and other 

tissues. It should be stressed that Western blot analysis of the developing embryos and 

tissues showed the huntingtin specific bands only after using 500mg total protein because 

of the relatively low concentration of HTT as a proportion of total protein. The expression 

level of the huntingtin protein for various developmental stages and tissues was estimated 

by normalization with ß-tubulin that showed a similar level of expression for all stages and 

tissues (Figure 5). 
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Whole mount Immuno histochemistry in larval and adult tissues 

 

 No evidence was found for expression of HTT in embryonic or other 

developmental stages using whole mounts, while expression of HTT was found in larval 

stages onwards as a punctuate signal in the ‘neck’ region of the larvae, mostly in the 

mesenchyme region and around the sensory vesicle (Figure 6). The expression of HTT 

was first noted around the ventral trunk region as two symmetrical clusters of cells in the 

hatching larva. These HTT expressing cells then apparently migrated during later-larval 

stages (Figure 6 B-C). As no positive expression of HTT was seen in the early embryonic 

stages such as 110 cell, gastrula, neurula and tailbud. It is likely that during these stages 

only the heavier transcript was present and that this codes for a form of the protein that the 

MCA antibody cannot identify in whole mounts. 

 

 The cells expressing HTT apparently migrated around the ‘head’ region of the 

animal prior to metamorphosis (Figure 6C). In the later stages of larval development,  the 

huntingtin protein was detected around the mesenchyme regions that  after 

metamorphosis makes some of the tissues in the adult and constitute the area around the 

brain complex. During the juvenile early rotation (first ascidian) stage, expression was 

evident as a L shaped pattern of cells between the neural ganglion and the mesenchyme 

region (Figure 6D). The dynamics of the HTT expressing cells was inferred by counting the 

number of positive cells in different planes of confocal images at each stage. As the mean 

number of huntingtin positive cells in the larval (51 ± 1 SEM, n = 5) and juvenile stages  

(55 ± 2.13 SEM, n=5) were not significantly different, we speculate in the discussion that 

this constancy of cell numbers  represents the possibility that a fixed number of cells are 

mobile, rather than indicating a changing expression pattern in different cells.   

 

 To identify the HTT expressing positive cells, embryos were co-immunostained 

with the HTT antibody and  an anti-aldoketoreductase enzyme antibody (AKR1C1). This 

enzyme (also called anti Oxidoreductase) has been identified as a potential marker for 

mesenchyme and TLC cells in a major expression study (T. Kusakabe et al. 2002).  We 

obtained an antibody raised against the mouse version of this enzyme and tested its 
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capacity to stain cells in Ciona. We found that in the early larval stages around 50 

mesenchyme cells were co-labeled by AKR1C1 and the HTT antibody (Figure 7). The 

pattern in the 3 week old adult shows a  huntingtin signal in the brain complex region and 

gut (Figure 6E-F), whereas there were no signals found in the tunic and muscles.  

 

Immunohistochemistry of HTT in adult nervous and glandular tissues 

 To further investigate the distribution of HTT in the adult, we carried out immuno 

histochemistry on semi-thin sections of Ciona brain complex (ganglion,  neural gland 

complex and ciliated duct together). The results  show that huntingtin protein is most 

abundant in the neural gland and dorsal tubercle along with the ciliated duct of the brain 

complex (Figure 8). HTT expression was seen a sparse pattern in the cerebral ganglion 

and was abundant in the neural gland, confirming the findings of the   rtPCR experiments.  

HTT was not seen to label neurons in the cerebral ganglion (Figure 8C and inset figure), 

despite the presence of RNA in the in situ study.  The neural gland shows a strong 

huntingtin distribution over the glandular epithelium but not in the basal lamina of the 

gland. In the dorsal tubercle,  the huntingtin signal was not seen in the ciliated epithelium 

but was present in the basal lamina. Specificity of the HTT staining in the sections was 

confirmed by a  control assay using pre-immune serum as a primary antibody and was 

negative for huntingtin staining on sections, whereas the same sections showed positive 

staining for the β tubulin. We interpret these results above as showing that the HTT 

antibody stains the protein translated by the ’light’ transcript  

Gene suppression study 

 Morpholino suppression of HTT induced some notable though subtle changes in 

the development of larvae and in metamorphosis (Figure 9). Post-fertilization 

microinjection of Morpholino showed consistent results rather than injection into  pre-

fertilized eggs followed by fertilization. The injection of 5-mis-sense Morpholino and un-

injected embryos served as dual controls and showed larva with completely normal 

development (such controls were carried out in parallel in each experiment).   It was also 

found from the morpholino suppression analysis that the expression of huntingtin protein 
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varied considerably in comparison with the control 5-mis-sense MO injected animals. The 

number of cells labeling with the HTT antibody decreased when compared to controls at 

the prehatching/hatching developmental stages in the MO injected developing embryos 

(Figure 9) and the number of cells remained consistently low in later stages.  This result 

suggests that the MO was able to partially block production of the protein. The number of 

huntingtin positive cells in the morpholino injected larva was significantly less than  control 

morpholino injected larva (significantly different at the 0.001 level in a Students t-test). 

Morpholino injected larvae showed  16 (±1.52 SEM, n=30) positive cells in comparison to 

48 (±1.3 SEM, n = 25) cells in the controls (based on data from larvae from 3 independent 

fertilization batches).  The other main   feature that was noted was that  while there was an 

apparent migration of the cells in the control morpholino larvae (Figure 9B) similar to that 

seen in control larvae, in the morpholino injected larvae, there was  very little displacement 

of the signal from the junction of the trunk with the tail (trunk lateral cell poutches)  in 

morpholino antisense  larvae (Figure 9 A) n=30.  

 

Rescue of the Morpholino was not performed because of the difficulty in making the 

full length huntingtin construct for  microinjection. The immuno histochemical analysis of 

the morpholino oligonucleotide suppressed larvae confirmed, in part, the partial absence 

of the huntingtin gene due to suppression. Complete suppression of huntingtin expression 

was ruled out in these experiments as there was always a minimal number huntingtin 

positive  stained cells.  
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Discussion 

In this study, we examined the anatomical expression pattern of HTT RNA as well 

as the translated protein during the development of Ciona intestinalis embryos, larvae and 

adults. Expression analysis by In situ hybridization and  real-time PCR  revealed that the 

huntingtin gene is expressed in neuronal and in some non-neuronal tissues. In humans, 

rodents and Fugu, the huntingtin gene is expressed as two differently sized transcripts in 

later embryonic development  13.0 and 10.0 kbps respectively  (Lin et al. 1993,  Schmitt et 

al. 1995). It must be of significance then that Huntingtin expression alters, and two 

proteins of different molecular weight are evident in Ciona prior to metamorphosis. The 

two different molecular weights of the protein seen in Western Blots, must be contrasted 

with the pattern seen in  immunohistochemistry where the antibody only detected a pattern 

consistent with the labeling of the lighter version of the protein.  We can only speculate 

that the lack of staining of  HTT with the antibody at other stages reflects a lack of access 

of the antibody when fixed in situ. This was not the cases in the Western bots. In general,  

these changes stress the importance of the huntingtin protein during development 

(particularly between the early and late larval stages) where it is translated from the 

differentially expressed huntingtin form through differential polyadenylation or alternative 

splicing as in the case of  the human huntingtin gene (Lin et al. 1993). 

The differential expression and changes in the form of the  protein both in 

development and in the stages directly prior to metamorphosis, suggests a parallel with 

the dual impact in vertebrates including mammals of huntingtin;  first acting on  early 

development (Lumsden et al. 2007) and later in mature individuals due to HD pathology  

(Anon 1993).  Certainly, the expression of Ciona huntingtin protein and the possible  

migration of HTT positive mesenchyme cells indicates a role in development especially 

during the larval stages and immediately prior to metamorphosis.   

 The dynamic reorganization of the huntingtin labeled cells prior to, during, and 

after metamorphosis was confirmed from the expression of the protein as two different 

forms from the Western blots carried out on late larval stages. This is likely to be due to the  

presence of the two different transcripts during development due to alternative splicing of 

two   polyadenylation sites in exon 50 of the huntingtin gene as suggested by Gissi et al 
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2006,  who predicted 12.5 and 10 kbps transcripts. The presence of the two transcripts is 

unlikely to be due to degradation during apoptosis as we blocked  metamorphosis  by 

maintaining larvae on agar coated petridishes and found that the two transcripts were  

maintained (data not shown). 

 

 The larval huntingtin protein becomes part of the ‘neurohypophysial’ complex in 

the late larval stages followed by the Juvenile stages (Rotation of the body axes stage) as 

an L shaped pattern. The neurohypophysial duct, where the huntingtin protein is 

expressed, differentiates into the neural gland rudiment and the dorsal wall begins to 

proliferate as neuroblasts. These converge to form the cerebral ganglion. In the adult, 

huntingtin protein was found in the neural gland but not in the cortex of the ganglion. This 

evidence suggests that it is likely that the ‘light’ form of the huntingtin protein is associated 

strongly with the dynamic changes during metamorphosis in Ciona and does not have a 

role in the nervous system of the adult (neither that of the larvae). This could explain some 

of the differences seen in the literature where (by using in situ hybridization),  it has been 

observed that HTT  is apparently absent from neuronal tissues in some invertebrates 

(Kauffman et al. 2003). In fact, the different protein masses may play two different, as yet 

unknown, roles and have different spatial and temporal expression patterns.  

 

The concentration of the huntingtin protein in early rotation stage juveniles makes 

an interesting comparison with the huntingtin mRNA pattern that was very low in similar 

stage juveniles. The Western blots showed that the protein in early rotation stage juveniles 

matures through post transcriptional modification (Alternative Polyadenylation splicing) or 

modification driven by some other factors in HTT, to produce the two forms of the HTT 

protein.  

Cell  counts show that  the   HTT positive cells in Ciona precede and survive the 

transition from larva to adult.  Metamorphosis in Ciona is a dynamic  event where there is 

cell proliferation, remodeling and cell death. Recent work has shown that the majority of 

the neurons in the larval nervous system of Ciona  (apart from  some interneurons in the 

tail) survive metamorphosis (Horie et al. 2011).  A small population of cells in the neck 

region of the larval nervous system  become a motoneurone population in the adult CNS 
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(Dufour et al. 2006) and TLCs in the larva are neural stem cells that also contribute to the 

adult CNS formation (Jeffery et al. 2008). As the HTT positive cell numbers were constant 

form late larva to juvenile, we may conclude that the HTT positive  cells were not subject 

to either programmed cell death or proliferation. Though other nearby cells are clearly 

subjected to both processes during metamorphosis.     

Interpretation of Morpholino gene suppression experiments 

 In vertebrates genetic manipulation has given some clues to the function of  HTT. 

For example, in transgenic mouse experiments, huntingtin has been shown to play a role 

in early development, as homozygous null mice exhibit developmental defects and display 

an increase in apoptosis in the embryonic ectoderm  (Nasir et al. 1995). Knockdown of 

huntingtin expression in zebrafish resulted in a variety  of developmental defects such as 

hypochromic blood due to decreased hemoglobin (Lumsden et al. 2007). In the mouse,  

effects of knockdown include  lethality, neurological deficits, neurodegeneration and 

impaired spermatogenesis suggesting that huntingtin is required in both embryonic and 

post embryonic stages (Nasir et al. 1995, Zeitlin et al. 1995,  White et al. 1997). Further 

evidence for a post embryonic role comes from study of the pathology of HTT, as when 

protein function is impaired by repeat expansion the effects are chronic and in the later 

stages of life causes Huntington’s chorea (Anon 1993). It has been suggested that HD 

pathology could be caused by a loss of function of the normal HTT protein  as much as by  

a gain of pathological function (see;   Zuccato et al. 2010). Several studies in vertebrates 

thus point to the neuroprotective role of normal HTT (Rigamonti et al. 2000, Rigamonti et 

al. 2001, Ho et al. 2001), in which removal of HTT or experimental manipulation results in 

an increased rate of cell death.  It is intriguing that HTT partial suppression by morpholino 

in the present experiments results in a decreased HTT positive cell population  consistent 

with a similar protective role of HTT. However, without parallel analysis of apoptosis in the 

larva it is not possible to attribute the decreased numbers to cell death per se. 

  

Mesenchyme cells and the HTT –positive population 
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The results of this study have important implications for our understanding of the function 

and nature of  mesenchyme and associated cells.  There are apparently around 900 such 

cells in the tadpole larvae derived from different lines or lineages (A7.6, B8.5, and B7.7) in 

the 110-cell stage embryo  (Tokuoka et al. 2004) These cells give rise to the adult body 

after metamorphosis and their migration in the early to metamorphically competent larva 

has been reported earlier (Satoh 1994,  Swalla et al. 1994).  Our HTT antibody labeled 

only 50 cells  that comprise a relatively small fraction of the mesenchyme cell total. Of the 

various subsets of mesenchyme cells, HTT -positive cells resemble most closely the trunk 

lateral cells (TLCs). TLCs are subset of mesenchyme cells that arise from the A7.6 

blastomeres and have been shown to actively migrate in the pre-metamorphic larva. They 

appear on or just before hatching, and have been defined as neural crest- like cells due to  

their behavior and positivity to the HNK-1 antigen (Jeffery et al. 2008). The numbers of 

TLCs and HTT positive cells are similar (although not identical; 28 in  Jeffery et al. 2008,  

vs 50 in the present study) and in disruption experiments,  the TLCs lack of migration was  

noted (Jeffery et al. 2008).  Considering the role of neural crest cells in development and 

phylogeny and the importance of HD pathology, the relationship between the HNK-1 and 

HTT should be further investigated.  

 

 Other functions of the mesenchyme cells that should be noted include their role in 

the remodeling of the larval body prior to and during metamorphosis from  the larva to the 

adult.  During this process, programmed cell death is activated (Tarallo & Sordino 2004, 

Chambon et al. 2007, Takada et al. 2005) and cell debris and their  by-products are 

processed and recycled. It has been noted that a population of the mesenchyme cells are  

autophagocytic (Mancuso & Dolcemascolo 1981) and may play a role in this restructuring 

process. Indeed,  autophagy related genes have now been established to be  present in 

Ciona (Godefroy et al. 2009) .  Also during HTT pathology,  and under experimental 

conditions, autophagy of HTT related debris has  been observed  and is now considered to 

be one of many important mechanisms in the neuropathology of the disease (Kegel et al. 

2000, Winslow & Rubinsztein 2008).  This feature and HTT-positive cells could perhaps 

deserve more attention in  future work on Ciona.  
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Conclusions 

In Ciona, HTT expression has a dynamic temporal and spatial expression pattern 

that precedes metamorphosis in ontogeny.  Although our results may reflect a derived role 

for the protein in pre and post- metamorphic events we also note that as in vertebrates, 

there is evidence for multiple differential expression events as well as differential 

expression of two forms of the protein, which presumably indicates multiple roles in 

ontogeny. We note some parallels between HTT positive cells, the TLCs, migration, 

possible cell- protection,  autophagy and tissue remodeling that should be further 

investigated.  
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Figure legends  

 

Figure 1. Expression of huntingtin mRNA during Ciona  development revealed by whole-

mount in situ hybridization. In the first column the embryonic stage is shown 

diagrammatically   based on images from the database 

http://chordate.bpni.bio.keio.ac.jp/faba/1.1/top.html (Hotta et al. 2007), with the expression 

signal  of key regions shown in  color. The  second and third columns  show    embryos 

hybridized with antisense and sense probes respectively. The last column describes the 

detail of the expression pattern of huntingtin mRNA. (A) Four cell stage, the signal is seen 

in all  four cells. (B) Eight cell stage, the signal is observed in all the cells. (C) 110 cell  

Gastrula stage, the signal was present in cells that give rise to  the nervous system ( 

A8.15, A8.8, A 8.7), the mesenchyme  (B8.5 & B7.7), the muscle (A8.16),  trunk lateral 

cells (B7.6),  endoderm (A 7.2), neural tube (A8.5) and notocord (B8.6)., (D) Neurula 

stage, a positive signal was prominent in mesenchyme and neural tube regions. (E) Early 

tailbud stage.  

 

Figure 2. Whole-mount in situ hybridization of huntingtin mRNA during Ciona 

development. Ciona larvae (Left panel) and juvenile (Right panel) against antisense probe 

and sense probes. (A) Larval ‘head’, the signal is seen in the sensory vesicle region, 

laterally to the future palps (red arrows) and around the mesenchyme region as spots. (B) 

Larval ‘head’, another view. (C) Lack of reaction to sense probe. Juvenile rotation stage 

Ciona (D), the transcript of the huntingtin seen in all the tissues. (E) Juvenile Ciona, dorsal  

view, (F) Juvenile with sense probe without any signal.   

 

Figure 3. In-situ hybridization of huntingtin gene in adult  brain sections. The sections 

were hybridized with the antisense huntingtin specific probes 1 and 2 (A-F). A. Neural 

gland and dorsal tubercle , B. dorsal tubercle ,C. neural gland along with cerebral 

ganglion, D. Neural gland another view, E. Cerebral ganglion,  F. Neural gland another 

view. G-I Ganglion and neural gland, as controls on hybridization with sense probe. Red 
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arrow indicates the presence of background staining in the cilia of the ciliated duct in both 

test and controls. GG – Cerebral ganglion, NG- Neural gland, CD – Ciliated duct and DT – 

Dorsal tubercle  

Figure 4.  Real-time PCR assay of relative quantity of huntingtin expression. The graph 

represents the Delta Ct Ct estimation of relative quantity of the target huntingtin 

expression against base-line of RPS27A housekeeping genes (see supplementary Table 1 

for details). The graph was plotted using Origin software against different tissues at each 

stage in the X-axis and the delta Ct Ct plotted on the Y axis. The bars represent the 

standard error of the mean for each value.  

 

Figure 5. Western blots of larval and adult stages and tissues. A,  The upper band 

represents 300 kDa and the lower   220 kDa. Lane thirteen contains the   broad range pre 

-stained marker (the band represents 205 kDa). The lower panels indicate the control β-

tubulin signal of  approximately 45 kDa for each sample. B, Greyscale densities of 330 and 

220 KDa bands from each lane normalized to the tubulin signal. 

Figure 6.  Whole mount immuno histochemistry for the huntingtin protein in Ciona 

intestinalis embryos. A, Mid Tailbud.  B, Late tail bud stage.    C,  Late larva.  D,  Early 

Juvenile (First ascidian stage).  E,  The siphon and brain of a young adult  (3 weeks old).  

F, Brain complex of 3 week old adult Ciona. The huntingtin protein signal is shown as 

green fluorescence in the first column  and the superimposed view of the green 

fluorescence with bright -field is seen in the second column. The signal of the huntingtin 

proteins are symmetrical in the embryos  and are mostly localized in the ventral trunk 

mesenchyme regions.  The red arrow points to the siphon of the adult and the Yellow 

arrow indicates the  adult brain ganglia. 

 

Figure 7. Dual whole-mount immunohistochemistry for huntingtin and AKR1C1 protein. A, 

Larval stage,  all the cells are labeled for both  markers. B, Late larval stage and Juvenile 

stages.  
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Figure 8. Immunohistochemistry on Ciona Brain Complex sections. Column one,  Ciona 

huntingtin specific signal, column two  Ciona ß-tubulin specific signal and column three, 

superimposition  of column one and two.  Row A;  the ganglion (GG) and neural gland to 

the right of the NG. Row B,    The neural gland.  Row C. The ganglion/neural gland    at 

higher magnification, D. Negative control. GG – Ganglion; NG – Neural gland; DT- Dorsal 

tubercle; CD – Ciliated duct; Yellow arrow points to single neuron. Inset C3 shows a  2X 

view of neuron staining in the ganglion for ß-tubulin antibody. 

 

Figure 9. Immunohistochemistry on morpholino and control injected larva used as a 

means of estimating the distribution of positive huntingtin protein signal in the;  A, 

Morpholino (M+) and B, Morpholino control (M-) larvae. Top row; dorso-ventral view shows 

both the side of the trunk and ventral staining. The number of positive huntingtin cells is 

~15 in the morpholino microinjected larval ‘head’, whereas in the control (bottom row) the 

signal was seen in ~50 cells.  

 

Supplementary Figure 1. Northen gel blot of 1-Early embryonic stage, 2- Late larval 

stage, 3- Brain complex of adult Ciona and 4- ss RNA Ladder (NEB). There is a single 

prominent band of approximately 11 kb in lane 1 and two bands of 11 kb and 12.5 kb in 

lane 2. Arrows indicate the bands, numbers to the side of the gel image indicate locations 

of known size markers. 

 

Supplementary Table 1. Table showing  mean Ct values for   HTT RNA and a 

housekeeping (RPS27a) gene along with  delta Ct, std delta Ct, Delta Ct Ct and SEM for 

different adult Ciona tissues and developmental stages used for the expression analysis 

based on Real time PCR. 

Supplementary Table 2. List of oligonucleotides used for probe synthesis for  in situ 

expression analysis. The HTT specific oligonucleotides were designed to span  Htt regions 

with different product sizes. 
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Supplementary Table 1 

Tissue and Stages 

Mean Ct - Ci-

HTT Mean Ct - RPS27A Delta Ct Std - ∆Ct ∆Ct Ct SEM 

Brain 24.4 22.0 -2.4 0.6 0.2 0.1 

Cerebral Ganglion 22.9 21.7 -1.2 0.6 0.4 0.2 

Neural Gland 23.4 23.2 -0.1 0.3 0.9 0.2 

Gut 24.2 23.0 -1.2 0.6 0.4 0.2 

Heart 27.0 24.2 -2.8 0.6 0.1 0.1 

Muscle 33.1 28.7 -4.4 0.2 0.0 0.0 

Egg 29.2 25.9 -3.3 1.1 0.1 0.1 

Gastrula 26.4 25.5 -0.9 0.6 0.5 0.2 

Neurula 26.1 25.7 -0.4 0.7 0.8 0.4 

Tail Bud 26.6 25.6 -1.0 0.7 0.5 0.2 

Early Larva 24.2 23.0 -1.2 0.6 0.4 0.2 

Late Larva 24.4 23.0 -1.4 0.8 0.4 0.2 

Early Juvenile 30.0 28.3 -1.7 1.2 0.3 0.2 

Late Juvenile 31.0 28.4 -2.6 0.8 0.2 0.1 
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Supplementary Table 2 

Name Type Sequence Size 

New3F Forward TCAAAGAAACACAGACAGGAACACT 
354 

5INSR Reverse CAGTTACTACAGATGAAGT 

HI9 Forward AATTCACTCTGCTCAAACTTTTACA 
551 

HI14 Reverse TGTGGAATAATGTAGTAGT 

HIF1 Forward ATTCGATTGTTTGAGATACTTGTGA 
560 

HIF1 Reverse TTCTTCCATTTCTCAACATTTTCAC 

HI1 Forward TATACAACAACTCCTCCAACCCACT 
1558 

HI2 Reverse ACAGCATCATGGCATTTCTC 
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