45 research outputs found

    Assessing the underlying drivers of change over two decades of land use and land cover dynamics along the Standard Gauge Railway corridor, Kenya

    Get PDF
    We acknowledge funding from the UK Research and Innovation’s Global Challenges Research Fund (UKRI GCRF) through the Development Corridors Partnership project (project number: ES/P011500/1).Land cover has been modified by anthropogenic activities for thousands of years, although the speed of change has increased in recent decades, particularly driven by socio-economic development. The development of transport infrastructure can accelerate land use land cover change, resulting in impacts on natural resources such as water, biodiversity, and food production. To understand the interaction between land cover and social–ecological drivers, changing land cover patterns and drivers of change must be identified and quantified. This study documents land cover dynamics along the Standard Gauge Railway (SGR) corridor in Kenya and evaluates the underlying drivers of this change from 2000 to 2019. The study utilised GIS and remote sensing techniques to assess the land use and land cover changes along the SGR corridor, while correlational and regression analyses were used to evaluate various drivers of the changes. Results showed that built-up areas, bare lands, water bodies, croplands and forests increased by 144.39%, 74.73%, 74.42%, 9.32% and 4.85%, respectively, while wetlands, grasslands and shrub lands reduced by 98.54%, 67.00% and 33.86%, respectively. The underlying drivers responsible for these land use and land cover dynamics are population growth, urbanisation, economic growth and agro-ecological factors. Such land cover changes affect environmental sustainability, and we stress the need to adequately identify and address the cumulative social and environmental impacts of mega-infrastructure projects and their interacting investments. The findings of this study provide an evidence base for the evaluation of the social–ecological impacts of the SGR and the implementation of best practices that will lead to enhanced sustainability in the development corridors in Kenya and beyond.Publisher PDFPeer reviewe

    Mitigating the Impacts of Development Corridors on Biodiversity: A Global Review

    Get PDF
    Development corridors are extensive, often transnational and linear, geographical areas targeted for investment to help achieve sustainable development. They often comprise the creation of hard infrastructure (i.e., physical structures) and soft infrastructure (i.e., policies, plans, and programmes) involving a variety of actors. They are globally widespread, and likely to be a significant driver of habitat loss. Here, we describe the development corridors phenomenon from a biodiversity perspective and identify the elements of best practice in biodiversity impact mitigation. We use these to carry out a review of the peer reviewed literature on corridors to respond to three questions: (i) how impacts on biodiversity and ecosystem services are assessed; (ii) what mitigation measures are discussed to manage these impacts; and (iii) to what extent do these measures approximate to best practice. We found that of 271 publications on development corridors across all continents (except for Antarctica) mentioning biodiversity or ecosystem services, only 100 (37%) assessed impacts on biodiversity and 7 (3%) on ecosystem services. Importantly, only half of these (52, 19% of the total 271 articles) discussed mitigation measures to manage these impacts. These measures focused on avoidance and minimisation and there was scant mention of restoration or ecological compensation illustrating a deficient application of the mitigation hierarchy. We conclude that the academic literature on corridors does not give sufficient consideration to comprehensive mitigation of biodiversity impacts. To change this, impact assessment research needs to acknowledge the complexity of such multi-project and multi-stakeholder initiatives, quantify biodiversity losses due to the full suite of their potential direct, indirect and cumulative impacts, and follow all the steps of the mitigation hierarchy impact framework. We suggest a series of research avenues and policy recommendations to improve impact assessments of corridors towards achieving better biodiversity outcomes

    The African Development Corridors Database: a new tool to assess the impacts of infrastructure investments

    Get PDF
    The large-scale expansion of built infrastructure is profoundly reshaping the geographies of Africa, generating lock-in patterns of development for future generations. Understanding the impact of these massive investments can allow development opportunities to be maximised and therefore be critical for attaining the United Nations’ Sustainable Development Goals and African Union’s Agenda 2063 aims. However, until now information on the types, scope, and timing of investments, their evolution and spatial-temporal impact was dispersed amongst various agencies. We developed a database of 79 development corridors across Africa, synthesizing data from multiple sources covering 184 projects on railways, wet and dry ports, pipelines, airports, techno-cities, and industrial parks. The georeferenced interlinked tabular and spatial database includes 22 attributes. We expect this database will improve coordination, efficiency, monitoring, oversight, strategic planning, transparency, and risk assessments, among other uses for investment banks, governments, impact assessment practitioners, communities, conservationists, economists, and regional economic bodies

    Systems thinking : an approach for understanding 'eco-agri-food systems'

    Get PDF
    The TEEBAgriFood ‘Scientific and Economic Foundations’ report addresses the core theoretical issues and controversies underpinning the evaluation of the nexus between the agri-food sector, biodiversity and ecosystem services and externalities including human health impacts from agriculture on a global scale. It argues the need for a ‘systems thinking‘ approach, draws out issues related to health, nutrition, equity and livelihoods, presents a Framework for evaluation and describes how it can be applied, and identifies theories and pathways for transformational change

    Exploring the benefits and dis-benefits of climate migration as an adaptive strategy along the rural-peri-urban continuum in Namibia

    Get PDF
    This research is funded by a UK Research and Innovation’s Global Challenges Research Fund University of York internal pumping grant Peri-Urban Resilient Ecosystems, the African Research and Initiative for Scientific Excellence (ARISE-PP-FA-141), the Development Corridors Partnership project (ES/P011500/1), the African Women in Climate Change Science Fellowship supported by the African Institute of Mathematical Sciences and Canadian International Development Research Centre, and the Climate Research for Development Postdoctoral Fellowship (CR4D-19–21) implemented by the African Academy of Sciences in partnership with the UK’s Department for International Development, Weather and Climate Information Services for Africa (WISER) programme and the African Climate Policy Center of the United Nations Economic Commission for Africa.The scale of climate migration across the Global South is expected to increase during this century. By 2050, millions of Africans are likely to consider, or be pushed into, migration because of climate hazards contributing to agricultural disruption, water and food scarcity, desertification, flooding, drought, coastal erosion, and heat waves. However, the migration-climate nexus is complex, as is the question of whether migration can be considered a climate change adaptation strategy across both the rural and urban space. Combining data from household surveys, key informant interviews, and secondary sources related to regional disaster, demographic, resource, and economic trends between 1990 and 2020 from north central and central dryland Namibia, we investigate (i) human migration flows and the influence of climate hazards on these flows and (ii) the benefits and dis-benefits of migration in supporting climate change adaptation, from the perspective of migrants (personal factors and intervening obstacles), areas of origin, and areas of destination. Our analysis suggests an increase in climate-related push factors that could be driving rural out-migration from the north central region to peri-urban settlements in the central region of the country. While push factors play a role in rural-urban migration, there are also several pull factors (many of which have been long-term drivers of urban migration) such as perceived higher wages, diversity of livelihoods, water, health and energy provisioning, remittances, better education opportunities, and the exchange of non-marketed products. Migration to peri-urban settlements can reduce some risks (e.g. loss of crops and income due to climate extremes) but amplify others (e.g. heat stress and insecure land tenure). Adaptation at both ends of the rural–urban continuum is supported by deeply embedded linkages in a model of circular rural–urban-rural migration and interdependencies. Results empirically inform current and future policy debates around climate mobilities in Namibia, with wider implications across Africa.Publisher PDFPeer reviewe
    corecore