3,246 research outputs found

    Stochastic model of optical variability of BL Lacertae

    Full text link
    We use optical photometric and polarimetric data of BL Lacertae that cover a period of 22 years to study the variability of the source. The long-term observations are employed for establishing parameters of a stochastic model consisting of the radiation from a steady polarized source and a number of variable components with different polarization parameters, proposed by Hagen-Thorn et al. earlier. We infer parameters of the model from the observations using numerical simulations based on a Monte Carlo method, with values of each model parameter selected from a Gaussian distribution. We determine the best set of model parameters by comparing model distributions to the observational ones using the chi-square criterion. We show that the observed photometric and polarimetric variability can be explained within a model with a steady source of high polarization, ~40%, and with direction of polarization parallel to the parsec scale jet, along with 10+-5 sources of variable polarization.Comment: 4 pages, 10 figures, published by Astronomy and Astrophysics; v2: typos correcte

    Gluon Chain Model of the Confining Force

    Full text link
    We develop a picture of the QCD string as a chain of constituent gluons, bound by attractive nearest-neighbor forces which may be treated perturbatively. This picture accounts for both Casimir scaling at large N, and the asymptotic center dependence of the static quark potential. We discuss the relevance, to the gluon-chain picture, of recent three-loop results for the static quark potential. A variational framework is presented for computing the minimal energy and wavefunction of a long gluon chain, which enables us to derive both the logarithmic broadening of the QCD flux tube (``roughening''), and the existence of a Luscher -c/R term in the potential.Comment: 25 pages, 5 figures, latex2

    A theoretical study of microwave beam absorption by a rectenna

    Get PDF
    The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed

    Bag Model for a Link in a Closed Gluonic Chain

    Full text link
    The large NcN_c limit of Yang-Mills gauge theory is the dynamics of a closed gluonic chain, but this fact does not obviate the inherently strong coupling nature of the dynamical problem. However, we suggest that a single link in such a chain might be reasonably described in the quasi-perturbative language of gluons and their interactions. To implement this idea, we use the MIT bag to model the physics of a nearest neighbor bond.Comment: 10 pages, LaTe

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94

    Scattering of Glue by Glue on the Light-cone Worldsheet I: Helicity Non-conserving Amplitudes

    Full text link
    We give the light-cone gauge calculation of the one-loop on-shell scattering amplitudes for gluon-gluon scattering which violate helicity conservation. We regulate infrared divergences by discretizing the p^+ integrations, omitting the terms with p^+=0. Collinear divergences are absent diagram by diagram for the helicity non-conserving amplitudes. We also employ a novel ultraviolet regulator that is natural for the light-cone worldsheet description of planar Feynman diagrams. We show that these regulators give the known answers for the helicity non-conserving one-loop amplitudes, which don't suffer from the usual infrared vagaries of massless particle scattering. For the maximal helicity violating process we elucidate the physics of the remarkable fact that the loop momentum integrand for the on-shell Green function associated with this process, with a suitable momentum routing of the different contributing topologies, is identically zero. We enumerate the counterterms that must be included to give Lorentz covariant results to this order, and we show that they can be described locally in the light-cone worldsheet formulation of the sum of planar diagrams.Comment: 30 pages, 17 figure

    A Formal Solution to Reichenbach’s Reference Class Problem

    Get PDF
    Following Reichenbach, it is widely held that in making a direct inference, one should base one’s conclusion on a relevant frequency statement concerning the most specific reference class for which one is able to make a warranted and relatively precise-valued frequency judgment. In cases where one has accurate and precise-valued frequency information for two relevant reference classes, R1 and R2, and one lacks accurate and precise-valued frequency information concerning their intersection, R1 intersect R2, it is widely held, following Reichenbach, that no inference may be drawn. In contradiction to Reichenbach and the common wisdom, I argue for the view that it is often possible to draw a reasonable informative conclusion, in such circumstances. As a basis for drawing such a conclusion, I show that one is generally in a position to formulate a reasonable direct inference for a reference class that is more specific than either of R1 and R2

    Field Theory On The World Sheet: Improvements And Generalizations

    Full text link
    This article is the continuation of a project of investigating planar phi^3 model in various dimensions. The idea is to reformulate them on the world sheet, and then to apply the classical (meanfield) approximation, with two goals: To show that the ground state of the model is a solitonic configuration on the world sheet, and the quantum fluctuations around the soliton lead to the formation of a transverse string. After a review of some of the earlier work, we introduce and discuss several generalizations and new results. In 1+2 dimensions, a rigorous upper bound on the solitonic energy is established. A phi^4 interaction is added to stabilize the original phi^3 model. In 1+3 and 1+5 dimensions, an improved treatment of the ultraviolet divergences is given. And significantly, we show that our approximation scheme can be imbedded into a systematic strong coupling expansion. Finally, the spectrum of quantum fluctuations around the soliton confirms earlier results: In 1+2 and 1+3 dimensions, a transverse string is formed on the world sheet.Comment: 29 pages, 5 figures, several typos and eqs.(74) and (75) are corrected, a comment added to section

    More On The Connection Between Planar Field Theory And String Theory

    Get PDF
    We continue work on the connection between world sheet representation of the planar phi^3 theory and string formation. The present article, like the earlier work, is based on the existence of a solitonic solution on the world sheet, and on the zero mode fluctuations around this solution. The main advance made in this paper is the removal of the cutoff and the transition to the continuum limit on the world sheet. The result is an action for the modes whose energies remain finite in this limit (light modes). The expansion of this action about a dense background of graphs on the world sheet leads to the formation of a string.Comment: 27 pages, 3 figure
    • …
    corecore