40 research outputs found

    Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing

    Get PDF
    The splashing of liquid drops onto a solid surface is important for a wide range of applications, including combustion and spray coating. As the drop hits the solid surface, the liquid is ejected into a thin horizontal sheet expanding radially over the substrate. Above a critical impact velocity, the liquid sheet is forced to separate from the solid surface by the ambient air, and breaks up into smaller droplets. Despite many applications involving complex fluids, their effects on splashing remain mostly unexplored. Here we show that the splashing of a nanoparticle dispersion can be suppressed at higher impact velocities by the interactions of the nanoparticles with the solid surface. Although the dispersion drop first shows the classical transition from deposition to splashing when increasing the impact velocity, no splashing is observed above a second higher critical impact velocity. This result goes against the commonly accepted understanding of splashing, that a higher impact velocity should lead to even more pronounced splashing. Our findings open new possibilities to deposit large amount of complex liquids at high speeds

    Direct Numerical Simulation of Rain Drop Impact on a Thin Layer of Oil over a Deep Water Pool

    No full text
    The impact of a water droplet onto a deep pool coated by a film of oil has not yet been thoroughly investigated numerically in the large Weber number range. This process occurs during rainfall on oil slicks at sea, and ejects oily aerosols into the atmosphere that later forms atmospheric particulates. We present direct numerical simulations of the three-phase process using the solver Basilisk. The numerical results are qualitatively and quantitatively compared to existing experimental data, and discuss the influence of numerical resolution on the crown and canopy closure. Finally, the effects of the oil properties and drop shape upon impact on the resulting splash dynamics are investigated

    Impact of compound drops: a perspective

    Get PDF
    Drop interaction with solid surfaces upon impact has been attracting a growing community of researchers who are focusing more and more on ‘complex’ surfaces and ‘complex’ drops. Recently, we are observing an emerging research trend related to the investigation of compound drop impact. Compound drops consist of two or more distinct continuous phases sharing common interfaces, surrounded by a third phase. Examples are core–shell and Janus drops. In this review, we address the fundamental aspects of compound drop impact and discuss the current challenges related to experimental testing and numerical simulation of multiphase fluid systems. Furthermore, we provide a perspective on the technological relevance of understanding and controlling compound drop impact, ranging from 3D printing to liquid separation for water cleaning and oil remediation

    Hydrodynamics and gas-liquid mass transfer around a confined sliding bubble

    No full text
    An experimental investigation of gas-liquid mass transfer in the wake of a confined air bubble sliding under an inclined wall in a 2D Hele-Shaw cell is reported. A colorimetric technique based on an oxygen-sensitive dye was used to visualize the oxygen transfer. Bubble velocities, shape eccentricities, interfacial areas and, for the first time, the instantaneous spatio-temporal distribution of oxygen concentration fields in the bubble wake, have been investigated for upper wall inclination angles of 10° ≤ α ≤ 60° and Archimedes numbers of 783 ≤ Ar ≤ 3221. Image processing has allowed, through a specific approach, a quantification of mass transfer. The calculation of the mass flux allowed the deduction of the liquid-side mass transfer coefficient kL. Experiments reveals that, at low angles of inclination, bubble velocities decelerates, shape eccentricities increased, and the instantaneous spatial and temporal distribution of oxygen concentration fields illustrated two distinct regions underneath the sliding bubble: a single vortex loop enclosing the near wake where oxygen is transferred, and a far wake containing oxygen in the form of a single long strip. When inclination angles and bubble sizes were increasing, velocities were increasing, the vortex elongated gradually until it disappears at high angles where total mass fluxes increased. This increase of bubble velocities has increased liquid-side mass transfer coefficient kL allowing a scaling law between the Sherwood number and the modified Archimedes number Ar.sin(α) to be proposed

    To split or not to split: dynamics of an air disk formed under a drop impacting on a pool

    No full text
    When a drop falls and impacts on a liquid pool, it entraps an air disk below the drop, which then contracts into a central bubble. Here, we use high-speed imaging and high-resolution numerical simulations to characterize the air-disk contraction dynamics for different liquid properties. We show that the air disk can contract into a single central bubble, form a toroidal bubble, or split vertically into two smaller bubbles. We demonstrate that the transitions between the different regimes can be separated by an Ohnesorge number, Ohe, based on the air-disk thickness. For the lowest Ohe, we find a new regime, where vortex shedding from the rim of the contracting air disk breaks the vertical symmetry and prevents the bubble from splitting in two

    von Kármán Vortex Street within an Impacting Drop

    No full text
    International audienceThe splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets. At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid from the free surface in an axisymmetric von Kármán vortex street, thus breaking the ejecta sheet as it forms
    corecore