1,677 research outputs found

    Integrative analysis of mRNA expression and half-life data reveals trans-acting genetic variants associated with increased expression of stable transcripts

    Get PDF
    Genetic variation in gene expression makes an important contribution to phenotypic variation and susceptibility to disease. Recently, a subset of cis -acting expression quantitative loci (eQTLs) has been found to result from polymorphisms that affect RNA stability. Here we carried out a search for trans -acting variants that influence RNA stability. We first demonstrate that differences in the activity of trans -acting factors that stabilize RNA can be detected by comparing the expression levels of long-lived (stable) and short-lived (unstable) transcripts in high-throughput gene expression experiments. Using gene expression microarray data generated from eight HapMap3 populations, we calculated the relative expression ranks of long-lived transcripts versus short-lived transcripts in each sample. Treating this as a quantitative trait, we applied genome-wide association and identified a single nucleotide polymorphism (SNP), rs6137010, on chromosome 20p13 with which it is strongly associated in two Asian populations ( p =  4×10 −10 in CHB - Han Chinese from Beijing; p  = 1×10 −4 in JPT - Japanese from Tokyo). This SNP is a cis -eQTL for SNRPB in CHB and JPT but not in the other six HapMap3 populations. SNRPB is a core component of the spliceosome, and has previously been shown to affect the expression of many RNA processing factors. We propose that a cis -eQTL of SNRPB may be directly responsible for inter-individual variation in relative expression of long-lived versus short-lived transcript in Asian populations. In support of this hypothesis, knockdown of SNRPB results in a significant reduction in the relative expression of long-lived versus short-lived transcripts. Samples with higher relative expression of long-lived transcripts also had higher relative expression of coding compared to non-coding RNA and of RNA from housekeeping compared to non-housekeeping genes, due to the lower decay rates of coding RNAs, particularly those that perform housekeeping functions, compared to non-coding RNAs

    Leptoquark search at the Forward Physics Facility

    Full text link
    In this study, we calculate the sensitivity reach on the vector leptoquark (LQ) U1U_1 at the experiments proposed in Forward Physics Facility (FPF), including FASERν\nu, FASERν2\nu2, FLArE (10 tons), and FLArE (100 tons) using the neutrino-nucleon scattering (νNνN\nu N \rightarrow \nu N' and νNlN\nu N \rightarrow l N'). We cover a wide mass range of 10310^{-3} GeV MLQ104\leq M_{LQ}\leq 10^4 GeV. The new result shows that the FLArE (100 tons) offers the best sensitivity to the LQ model. The sensitivity curves for all the experiments follow a similar pattern with weakened sensitivities with the increment of the LQ mass. We combine the sensitivities obtained from the neutral- and charged-current interactions of the neutrinos.Comment: 21 pages, 10 figures. Adding two subfigures on the TeV mass LQ mass regim

    Fast and Efficient Compressive Sensing using Structurally Random Matrices

    Get PDF
    This paper introduces a new framework of fast and efficient sensing matrices for practical compressive sensing, called Structurally Random Matrix (SRM). In the proposed framework, we pre-randomize a sensing signal by scrambling its samples or flipping its sample signs and then fast-transform the randomized samples and finally, subsample the transform coefficients as the final sensing measurements. SRM is highly relevant for large-scale, real-time compressive sensing applications as it has fast computation and supports block-based processing. In addition, we can show that SRM has theoretical sensing performance comparable with that of completely random sensing matrices. Numerical simulation results verify the validity of the theory as well as illustrate the promising potentials of the proposed sensing framework

    Establishing and validating noninvasive prenatal testing procedure for fetal aneuploidies in Vietnam

    Get PDF
    Noninvasive prenatal testing (NIPT) for fetal aneuploidies has been widely adopted in developed countries. Despite the sharp decrease in the cost of massively parallel sequencing, the technical know-how and skilled personnel are still one of the major limiting factors for applying this technology to NIPT in low-income settings. Here, we present the establishment and validation of our NIPT procedure called triSure for detection of fetal aneuploidies.We established the triSure algorithm based on the difference in proportion of fetal and maternal fragments from the target chromosome to all chromosomes. Our algorithm was validated using a published data set and an in-house data set obtained from high-risk pregnant women in Vietnam who have undergone amniotic testing. Several other aneuploidy calling methods were also applied to the same data set to benchmark triSure performance.The triSure algorithm showed similar accuracy to size-based method when comparing them using published data set. Using our in-house data set from 130 consecutive samples, we showed that triSure correctly identified the most samples (overall sensitivity and specificity of 0.983 and 0.986, respectively) compared to other methods tested including count-based, sized-based, RAPIDR and NIPTeR.We have demonstrated that our triSure NIPT procedure can be applied to pregnant women in low-income settings such as Vietnam, providing low-risk screening option to reduce the need for invasive diagnostic tests

    Substantial effect of efavirenz monotherapy on bilirubin levels in healthy volunteers

    Get PDF
    BACKGROUND: Efavirenz exhibits multiple interactions with drug-metabolizing enzymes and transporters, and for this reason efavirenz-based HIV therapy is associated with altered pharmacokinetics of coadministered drugs. Probably by the same mechanism, efavirenz-based HIV therapy affects the disposition of endogenous compounds, but this effect is difficult to directly link with efavirenz because it is used in combination with other drugs. OBJECTIVES: To explore the effect of efavirenz monotherapy on biochemical laboratory values in a clinical trial of healthy volunteers. METHODS: Men and women (aged 18-49 years) with body mass index ≤32 who were assessed to be healthy based on medical history, physical examination, and standard laboratory screening received a single (600 mg) and multiple doses (600 mg/d for 17 days) of efavirenz orally. This trial was designed to determine the pharmacokinetics and drug interactions of efavirenz. As part of this study, analysis of serum chemistries that were measured at study entry (screening) and 1 week after completion of the multiple dose study (exit) is reported. RESULTS: Data from 60 subjects who fully completed and 13 subjects who partially completed the study are presented. Total bilirubin was substantially reduced at exit (by ~30%, with large intersubject variability) compared with screening values (P < 0.0001). The percent changes were in part explained by the intersubject differences in baseline total bilirubin because there was a significant correlation between baseline (screening) values and percent change at exit (r = 0.50; P < 0.0001). Hemoglobin and absolute neutropenia were also substantially decreased at exit compared with screening, but this may be due to intensive blood sampling rather than direct effect of efavirenz on these parameters. No significant correlation was found between percent change in hemoglobin versus percent change in bilirubin, indicating the effect of efavirenz on bilirubin is independent of its effects on hemoglobin. CONCLUSIONS: Efavirenz monotherapy significantly lowers plasma total bilirubin concentration in healthy volunteers independent of its effect on hemoglobin, probably through its effects on bilirubin metabolism and transport (uptake and efflux). These findings help explain reversal by efavirenz of hyperbilirubinemia induction observed by some protease inhibitor antiretroviral drugs (eg, atazanavir). Besides its well-documented role on drug interactions, efavirenz may alter the disposition of endogenous compounds relevant in physiologic homeostasis through its interaction with drug metabolizing enzymes and/or drug transporters. ClinicalTrials.gov identifier: NCT00668395

    AsiFood and its output and prospects: An Erasmus+ project on capacity building in food safety and quality for South-East Asia

    Get PDF
    The Asifood project is a capacity building project in the field of higher education involving collaboration among thirteen partners from Cambodia, Thailand, Vietnam, Austria, Belgium, Italy and France. This project aimed to support the universities in Vietnam, Thailand and Cambodia in building their capacities and their link with professionals in food safety and food quality, in the context of ASEAN integration. Further, training for trainers around a key theme, ‘food safety and quality’ for partner countries was set up involving students and teachers, professional stakeholders, political decision-makers and association leaders. During the first year of the project, study and diagnostic phase were carried out to properly assess the training as per each university needs. In the second year, the training paths around three axes: courses, quality and laboratory analysis were conducted. Finally, a test phase was carried out with the partners by inserting the modules created in the bachelor's and master's degree courses offered by the universities as well as short term trainings on innovations in food safety and quali

    Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is increasingly recognized as a systemic disease driven by alteration in the normal functioning of multiple metabolic pathways affecting all of the major carbon substrates, including amino acids. We found that human pulmonary hypertension patients (WHO Group I, PAH) exhibit systemic and pulmonary-specific alterations in glutamine metabolism, with the diseased pulmonary vasculature taking up significantly more glutamine than that of controls. Using cell culture models and transgenic mice expressing PAH-causing BMPR2 mutations, we found that the pulmonary endothelium in PAH shunts significantly more glutamine carbon into the tricarboxylic acid (TCA) cycle than wild-type endothelium. Increased glutamine metabolism through the TCA cycle is required by the endothelium in PAH to survive, to sustain normal energetics, and to manifest the hyperproliferative phenotype characteristic of disease. The strict requirement for glutamine is driven by loss of sirtuin-3 (SIRT3) activity through covalent modification by reactive products of lipid peroxidation. Using 2-hydroxybenzylamine, a scavenger of reactive lipid peroxidation products, we were able to preserve SIRT3 function, to normalize glutamine metabolism, and to prevent the development of PAH in BMPR2 mutant mice. In PAH, targeting glutamine metabolism and the mechanisms that underlie glutamine-driven metabolic reprogramming represent a viable novel avenue for the development of potentially disease-modifying therapeutics that could be rapidly translated to human studies
    corecore