11 research outputs found

    Bioturbator-stimulated loss of seagrass sediment carbon stocks

    Full text link
    © 2018 Association for the Sciences of Limnology and Oceanography Seagrass ecosystems are highly productive, and are sites of significant carbon sequestration. Sediment-held carbon stocks can be many thousands of years old, and persist largely due to sediment anoxia and because microbial activity is decreasing with depth. However, the carbon sequestered in seagrass ecosystems may be susceptible to remineralization via the activity of bioturbating fauna. Microbial priming is a process whereby remineralization of sediment carbon (recalcitrant organic matter) is stimulated by disturbance, i.e., burial of a labile source of organic matter (seagrass). We investigated the hypothesis that bioturbation could mediate remineralization of sediment carbon stocks through burial of seagrass leaf detritus. We carried out a 2-month laboratory study to compare the remineralization (measured as CO 2 release) of buried seagrass leaves (Zostera muelleri) to the total rate of sediment organic matter remineralization in sediment with and without the common Australian bioturbating shrimp Trypaea australiensis (Decapoda: Axiidea). In control sediment containing seagrass but no bioturbators, we observed a negative microbial priming effect, whereby seagrass remineralization was favored over sediment remineralization (and thus preserving sediment stocks). Bioturbation treatments led to a two- to five-fold increase in total CO 2 release compared to controls. The estimated bioturbator-stimulated microbial priming effect was equivalent to 15% of the total daily sediment-derived CO 2 releases. We propose that these results indicate that bioturbation is a potential mechanism that converts these sediments from carbon sinks to sources through stimulation of priming-enhanced sediment carbon remineralization. We further hypothesized that significant changes to seagrass faunal communities may influence seagrass sediment carbon stocks

    Can we manage coastal ecosystems to sequester more blue carbon?

    Full text link
    © The Ecological Society of America To promote the sequestration of blue carbon, resource managers rely on best-management practices that have historically included protecting and restoring vegetated coastal habitats (seagrasses, tidal marshes, and mangroves), but are now beginning to incorporate catchment-level approaches. Drawing upon knowledge from a broad range of environmental variables that influence blue carbon sequestration, including warming, carbon dioxide levels, water depth, nutrients, runoff, bioturbation, physical disturbances, and tidal exchange, we discuss three potential management strategies that hold promise for optimizing coastal blue carbon sequestration: (1) reducing anthropogenic nutrient inputs, (2) reinstating top-down control of bioturbator populations, and (3) restoring hydrology. By means of case studies, we explore how these three strategies can minimize blue carbon losses and maximize gains. A key research priority is to more accurately quantify the impacts of these strategies on atmospheric greenhouse-gas emissions in different settings at landscape scales

    Factors associated with psychotropic drug use among community-dwelling older persons: A review of empirical studies

    Get PDF
    BACKGROUND: In the many descriptive studies on prescribed psychotropic drug use by community-dwelling older persons, several sociodemographic and other factors associated with drug use receive inconsistent support. METHOD: Empirical reports with data on at least benzodiazepine or antidepressant drug use in samples of older persons published between 1990 and 2001 (n = 32) were identified from major databases and analyzed to determine which factors are most frequently associated with psychotropic drug use in multivariate analyses. Methodological aspects were also examined. RESULTS: Most reports used probability samples of users and non-users and employed cross-sectional designs. Among variables considered in 5 or more reports, race, proximity to health centers, medical consultations, sleep complaints, and health perception were virtually always associated to drug use. Gender, mental health, and physical health status were associated in about two-thirds of reports. Associations with age, marital status, medication coverage, socioeconomic status, and social support were usually not observed. CONCLUSIONS: The large variety of methods to operationalize drug use, mental health status, and social support probably affected the magnitude of observed relationships. Employing longitudinal designs and distinguishing short-term from long-term use, focusing on samples of drug users exclusively, defining drug use and drug classes more uniformly, and utilizing measures of psychological well-being rather than only of distress, might clarify the nature of observed associations and the direction of causality. Few studies tested specific hypotheses. Most studies focused on individual characteristics of respondents, neglecting the potential contribution of health care professionals to the phenomenon of psychotropic drug use among seniors

    Short-term fate of seagrass and macroalgal detritus in Arenicola marina bioturbated sediments

    Full text link
    © The authors 2020. Seagrass meadows are globally important ecosystems for carbon (C) sequestration. However, bioturbation by benthic fauna can alter the distribution, degradation and overall preservation of C in the sediment. We performed a 4 wk laboratory experiment to investigate the short-term degradation and burial of 2 major C sources in bare sediments associated with seagrass ecosystems. Eelgrass Zostera marina and macroalgal (Fucus vesiculosus) detritus were amended in sediment with and without bioturbation by the common polychaete Arenicola marina. Bioturbation did not significantly affect the loss of eelgrass detritus (>0.5 mm), but caused a rapid burial of this material as a discrete layer (55% recovery) at sediment depths ranging from 8 to 14 cm. A. marina effects on macroalgal detritus were more pronounced, resulting, in total, in an 80% loss of macroalgal detritus by microbial degradation and worm ingestion. We conclude that A. marina bioturbation effectively buries eelgrass detritus into deep anoxic sediments, but we cannot confirm that this leads to enhanced C preservation in coastal ecosystems. In contrast, A. marina bioturbation significantly increases the degradation of macroalgal tissue, and it is unlikely that this detritus is a major source for permanent C burial

    Fresh carbon inputs to seagrass sediments induce variable microbial priming responses

    Full text link
    © 2017 Elsevier B.V. Microbes are the ‘gatekeepers’ of the marine carbon cycle, yet the mechanisms for how microbial metabolism drives carbon sequestration in coastal ecosystems are still being defined. The proximity of coastal habitats to runoff and disturbance creates ideal conditions for microbial priming, i.e., the enhanced remineralisation of stored carbon in response to fresh substrate availability and oxygen introduction. Microbial priming, therefore, poses a risk for enhanced CO2 release in these carbon sequestration hotspots. Here we quantified the existence of priming in seagrass sediments and showed that the addition of fresh carbon stimulated a 1.7- to 2.7-fold increase in CO2 release from recent and accumulated carbon deposits. We propose that priming taking place at the sediment surface is a natural occurrence and can be minimised by the recalcitrant components of the fresh inputs (i.e., lignocellulose) and by reduced metabolism in low oxygen and high burial rate conditions. Conversely, priming of deep sediments after the reintroduction to the water column through physical disturbances (e.g., dredging, boat scars) would cause rapid remineralisation of previously preserved carbon. Microbial priming is identified as a process that weakens sediment carbon storage capacity and is a pathway to CO2 release in disturbed or degraded seagrass ecosystems; however, increased management and restoration practices can reduce these anthropogenic disturbances and enhance carbon sequestration capacity

    Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism

    Full text link
    © 2014, Coastal and Estuarine Research Federation. Resilience of seagrass meadows relies on the ability of seagrass to successfully recolonise denuded areas or disperse to new areas. While seed germination and rhizome extension have been explored as modes of recovery and expansion, the contribution of seagrass viviparous propagules to meadow population dynamics has received little attention. Here, we investigated the potential of seagrass viviparous propagules to act as dispersal vectors. We performed a series of density surveys, and in situ and mesocosm-based experiments in Port Phillip Bay, VIC, Australia, using Zostera nigricaulis, a species known to produce viviparous propagules. Production of viviparous propagules was higher at sites with high wind and current exposure, compared to more sheltered environments. A number of propagules remained buoyant and healthy for more than 85 days, suggesting the capacity for relatively long-distance dispersal. Transplanted propagules were found to have improved survivorship within seagrass habitats compared to bare sediment over the short term (4 weeks); however, all propagules suffered longer-term (<100 days) mortality in field experiments. Conditions outside of meadows, including sediment scouring, reduced the likelihood of successful colonisation in bare sediment. Furthermore, sediment characteristics within meadows, such as a smaller grain size and high organic content, positively influenced propagule establishment. This research provides preliminary evidence that propagules have the potential to act as an important long-distance dispersal vector, a process that has previously gone unrecognised. Even though successful establishment of propagules may be rare, viviparous propagules show great potential for seagrass populations given they are facing global decline
    corecore