44 research outputs found

    Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins

    Get PDF
    The targeting signals and mechanisms of soluble peroxisomal proteins are well understood, whereas less is known about the signals and targeting routes of peroxisomal membrane proteins (PMP). Pex15 and PEX26, tail-anchored proteins in yeast and mammals, respectively, exert a similar cellular function in the recruitment of AAA peroxins at the peroxisomal membrane. But despite their common role, Pex15 and PEX26 are neither homologs nor they are known to follow similar targeting principles. Here we show that Pex15 targets to peroxisomes in mammalian cells, and PEX26 reaches peroxisomes when expressed in yeast cells. In both proteins C-terminal targeting information is sufficient for correct sorting to the peroxisomal membrane. In yeast, PEX26 follows the pathway that also ensures correct targeting of Pex15: PEX26 enters the endoplasmic reticulum (ER) in a GET-dependent and Pex19-independent manner. Like in yeast, PEX26 enters the ER in mammalian cells, however, independently of GET/TRC40. These data show that conserved targeting information is employed in yeast and higher eukaryotes during the biogenesis of peroxisomal tail-anchored proteins

    Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins

    Get PDF
    The targeting signals and mechanisms of soluble peroxisomal proteins are well understood, whereas less is known about the signals and targeting routes of peroxisomal membrane proteins (PMP). Pex15 and PEX26, tail-anchored proteins in yeast and mammals, respectively, exert a similar cellular function in the recruitment of AAA peroxins at the peroxisomal membrane. But despite their common role, Pex15 and PEX26 are neither homologs nor they are known to follow similar targeting principles. Here we show that Pex15 targets to peroxisomes in mammalian cells, and PEX26 reaches peroxisomes when expressed in yeast cells. In both proteins C-terminal targeting information is sufficient for correct sorting to the peroxisomal membrane. In yeast, PEX26 follows the pathway that also ensures correct targeting of Pex15: PEX26 enters the endoplasmic reticulum (ER) in a GET-dependent and Pex19-independent manner. Like in yeast, PEX26 enters the ER in mammalian cells, however, independently of GET/TRC40. These data show that conserved targeting information is employed in yeast and higher eukaryotes during the biogenesis of peroxisomal tail-anchored proteins

    Characterization of two common 5' polymorphisms in PEX1 and correlation to survival in PEX1 peroxisome biogenesis disorder patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in PEX1 are the most common primary cause of Zellweger syndrome. In addition to exonic mutations, deletions and splice site mutations two 5' polymorphisms at c.-137 and c.-53 with a potential influence on PEX1 protein levels have been described in the 5' untranslated region (UTR) of the <it>PEX1 </it>gene.</p> <p>Methods</p> <p>We used RACE and in silico promoter prediction analysis to study the 5' UTR of <it>PEX1</it>. We determined the distribution of <it>PEX1 </it>5' polymorphisms in a cohort of 30 Zellweger syndrome patients by standard DNA sequencing. 5' polymorphisms were analysed in relation to the two most common mutations in <it>PEX1 </it>and were incorporated into a novel genotype-phenotype analysis by correlation of three classes of <it>PEX1 </it>mutations with patient survival.</p> <p>Results</p> <p>We provide evidence that the polymorphism 137 bp upstream of the ATG codon is not part of the UTR, rendering it a promoter polymorphism. We show that the first, but not the second most common <it>PEX1 </it>mutation arose independently of a specific upstream polymorphic constellation. By genotype-phenotype analysis we identified patients with identical exonic mutation and identical 5' polymorphisms, but strongly differing survival.</p> <p>Conclusions</p> <p>Our study suggests that two different types of <it>PEX1 </it>5' polymorphisms have to be distinguished: a 5' UTR polymorphism at position c.-53 and a promoter polymorphism 137 bp upstream of the PEX1 start codon. Our results indicate that the exonic <it>PEX1 </it>mutation correlates with patient survival, but the two 5' polymorphisms analysed in this study do not have to be considered for diagnostic and/or prognostic purposes.</p

    Cellular inorganic carbon fluxes in Trichodesmium: a combined approach using measurements and modelling

    Get PDF
    To predict effects of climate change on phytoplankton, it is crucial to understand how their mechanisms for carbon acquisition respond to environmental conditions. Aiming to shed light on the responses of extra- and intracellular inorganic C (Ci) fluxes, the cyanobacterium Trichodesmium erythraeum IMS101 was grown with different nitrogen sources (N2 vs NO3 –) and pCO2 levels (380 vs 1400 µatm). Cellular Ci fluxes were assessed by combining membrane inlet mass spectrometry (MIMS), 13C fractionation measurements, and modelling. Aside from a significant decrease in Ci affinity at elevated pCO2 and changes in CO2 efflux with different N sources, extracellular Ci fluxes estimated by MIMS were largely unaffected by the treatments. 13C fractionation during biomass production, however, increased with pCO2, irrespective of the N source. Strong discrepancies were observed in CO2 leakage estimates obtained by MIMS and a 13C-based approach, which further increased under elevated pCO2. These offsets could be explained by applying a model that comprises extracellular CO2 and HCO3 – fluxes as well as internal Ci cycling around the carboxysome via the CO2 uptake facilitator NDH-14. Assuming unidirectional, kinetic fractionation between CO2 and HCO3 – in the cytosol or enzymatic fractionation by NDH-14, both significantly improved the comparability of leakage estimates. Our results highlight the importance of internal Ci cycling for 13C composition as well as cellular energy budgets of Trichodesmium, which ought to be considered in process studies on climate change effects

    Functional Translational Readthrough: A Systems Biology Perspective.

    No full text
    Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries

    Live-Cell Imaging of Peroxisomal Calcium Levels and Dynamics

    No full text
    Sargsyan Y, Thoms S. Live-Cell Imaging of Peroxisomal Calcium Levels and Dynamics. Methods in Molecular Biology . 2023;2643:199-206.Calcium (Ca2+) is an intracellular messenger that plays an essential role in a variety of cellular processes ranging from early embryonic events to muscle contraction and neuron excitability. Measurement of cytosolic, endoplasmic reticulum (ER), and mitochondrial Ca2+ has contributed immensely to our understanding of cellular physiology. Here we describe the measurement of peroxisomal Ca2+ using ratiometric Ca2+ sensors, enabling measurement of absolute Ca2+ concentration and its dynamics in living cells. © 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

    Functions of vertebrate ferlins

    No full text
    Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development

    Calcium in peroxisomes: An essential messenger in an essential cell organelle

    No full text
    Sargsyan Y, Kalinowski J, Thoms S. Calcium in peroxisomes: An essential messenger in an essential cell organelle. Frontiers in Cell and Developmental Biology. 2022;10: 992235.Calcium is a central signal transduction element in biology. Peroxisomes are essential cellular organelles, yet calcium handling in peroxisomes has been contentious. Recent advances show that peroxisomes are part of calcium homeostasis in cardiac myocytes and therefore may contribute to or even shape their calcium-dependent functionality. However, the mechanisms of calcium movement between peroxisomes and other cellular sites and their mediators remain elusive. Here, we review calcium handling in peroxisomes in concert with other organelles and summarize the most recent knowledge on peroxisomal involvement in calcium dynamics with a focus on mammalian cells

    Dataset1

    No full text
    Genome-wide in silico analysis of basal translational readthrough. Calculation of readthrough propensity (RTP) of stop codon contexts (SCCs), peroxisomal targeting signals type 1 (PTS) in the extensions. RTP * PTS1 product scores, and other functional elements. Applet for RTP calculation of user-entered SCCs

    Systems biology uncovers translational readthrough in humans.

    No full text
    <p>Readthrough genes have been identified with varying levels of experimental confirmation. Gene symbols of gene products known to undergo functional translational readthrough (FTR) are depicted in bold. Circle sizes do not correspond to the number of analyzed genes. Black circles refer to approaches other than systems approaches.</p
    corecore