65,925 research outputs found

    Haze in the Mars atmosphere as revealed by the Mariner 4 television data

    Get PDF
    Photometric investigation of haze in Mars atmosphere revealed by Mariner 4 television dat

    Diurnal variation in harbour porpoise detection – potential implications for management

    Get PDF
    Peer reviewedPublisher PD

    Spectral Line Broadening and Angular Blurring due to Spacetime Geometry Fluctuations

    Full text link
    We treat two possible phenomenological effects of quantum fluctuations of spacetime geometry: spectral line broadening and angular blurring of the image of a distance source. A geometrical construction will be used to express both effects in terms of the Riemann tensor correlation function. We apply the resulting expressions to study some explicit examples in which the fluctuations arise from a bath of gravitons in either a squeezed state or a thermal state. In the case of a squeezed state, one has two limits of interest: a coherent state which exhibits classical time variation but no fluctuations, and a squeezed vacuum state, in which the fluctuations are maximized.Comment: 21 pages, 2 figures. Dedicated to Raphael Sorkin on the occasion of his 60th birthday. (v2: several references added and some minor errors corrected

    Millipeds (Arthropoda: Diplopoda) of the Ark - La - Tex. VI. New Geographic Distributional Records from Select Counties of Arkansas

    Get PDF
    We continue to report, in the sixth of a series of papers, new geographic records for millipeds of the state, including noteworthy records for some taxa collected from Crowley’s Ridge in eastern Arkansas. This contribution documents 47 new co. records and includes records for 19 species within 9 families and 5 orders. More uncommon millipeds found included Okliulus carpenteri (Parajulidae), Eurymerodesmus newtonus (Eurymerodesmidae), Pseudopolydesmus minor (Polydesmidae) and undescribed species of Ethojulus (Parajulidae) and Nannaria (Xystodesmidae). Undoubtedly, additional records will be reported in the future as several gaps in the distribution of Arkansas millipeds remain

    The Fourier coefficients of Eisenstein series newforms

    Get PDF
    In this article, we study the Fourier coefficients of Eisenstein series newforms. We obtain a sharp refinement of the strong multiplicity-one theorem by showing that the density of primes p for which the pth Hecke eigenvalues of two distinct Eisenstein series newforms differ is of the form 1/n for some n ≥ 2. Additionally, we show that if f is an Eisenstein series newform whose Fourier coefficients af (n) are real then there is a constant δ > 0 such that the sequence (af (n))n≤x has at least δx sign changes

    Start to end simulations of the ERL prototype at Daresbury Laboratory

    Get PDF
    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will serve as a research and development facility for the study of beam dynamics and accelerator technology important to the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives of the ERLP are the demonstration of energy recovery and of energy recovery from a beam disrupted by an FEL interaction as supplied by an infrared oscillator system. In this paper we present start-to-end simulations of the ERLP including such an FEL interaction. The beam dynamics in the highbrightness injector, which consists of a DC photocathode Gun and a superconducting booster, have been modelled using the particle tracking code ASTRA. After the booster the particles have been tracked with the code elegant. The 3D code GENESIS 1.3 was used to model the FEL interaction with the electron beam at 35 MeV. A brief summary of impedance and wakefield calculations for the whole machine is also given

    Electrodynamics of Magnetars IV: Self-Consistent Model of the Inner Accelerator, with Implications for Pulsed Radio Emission

    Full text link
    We consider the voltage structure in the open-field circuit and outer magnetosphere of a magnetar. The standard polar-cap model for radio pulsars is modified significantly when the polar magnetic field exceeds 1.8x10^{14} G. Pairs are created by accelerated particles via resonant scattering of thermal X-rays, followed by the nearly instantaneous conversion of the scattered photon to a pair. A surface gap is then efficiently screened by e+- creation, which regulates the voltage in the inner part of the circuit to ~10^9 V. We also examine the electrostatic gap structure that can form when the magnetic field is somewhat weaker, and deduce a voltage 10-30 times larger over a range of surface temperatures. We examine carefully how the flow of charge back to the star above the gap depends on the magnitude of the current that is extracted from the surface of the star, on the curvature of the magnetic field lines, and on resonant drag. The rates of different channels of pair creation are determined self-consistently, including the non-resonant scattering of X-rays, and collisions between gamma rays and X-rays. We find that the electrostatic gap solution has too small a voltage to sustain the observed pulsed radio output of magnetars unless i) the magnetic axis is nearly aligned with the rotation axis and the light of sight; or ii) the gap is present on the closed as well as the open magnetic field lines. Several properties of the radio magnetars -- their rapid variability, broad pulses, and unusually hard radio spectra -- are consistent with a third possibility, that the current in the outer magnetosphere is strongly variable, and a very high rate of pair creation is sustained by a turbulent cascade.Comment: 32 pages, submitted to the Astrophysical Journa
    corecore