2,573 research outputs found

    Nuclear Magnetic Resonance and Hyperfine Structure

    Get PDF
    Contains reports on five research projects

    Epidemiological trends and clinical outcomes of cryptococcosis in a medically insured population in the United States: a claims-based analysis from 2017 to 2019

    Get PDF
    Background: Emerging risk factors highlight the need for an updated understanding of cryptococcosis in the United States. Objective: Describe the epidemiological trends and clinical outcomes of cryptococcosis in three patient groups: people with HIV (PWH), non-HIV-infected and non-transplant (NHNT) patients, and patients with a history of solid organ transplantation. Methods: We utilized data from the Merative Medicaid Database to identify individuals aged 18 and above with cryptococcosis based on the International Classification of Diseases, Tenth Revision diagnosis codes from January 2017 to December 2019. Patients were stratified into PWH, NHNT patients, and transplant recipients according to Infectious Diseases Society of America guidelines. Baseline characteristics, types of cryptococcosis, hospitalization details, and in-hospital mortality rates were compared across groups. Results: Among 703 patients, 59.7% were PWH, 35.6% were NHNT, and 4.7% were transplant recipients. PWH were more likely to be younger, male, identify as Black, and have fewer comorbidities than patients in the NHNT and transplant groups. Notably, 24% of NHNT patients lacked comorbidities. Central nervous system, pulmonary, and disseminated cryptococcosis were most common overall (60%, 14%, and 11%, respectively). The incidence of cryptococcosis fluctuated throughout the study period. PWH accounted for over 50% of cases from June 2017 to June 2019, but this proportion decreased to 47% from July to December 2019. Among the 52% of patients requiring hospitalization, 61% were PWH and 35% were NHNT patients. PWH had longer hospital stays. In-hospital mortality at 90days was significantly higher in NHNT patients (22%) compared to PWH (7%) and transplant recipients (0%). One-year mortality remained lowest among PWH (8%) compared to NHNT patients (22%) and transplant recipients (13%). Conclusion: In this study, most cases of cryptococcosis were PWH. Interestingly, while the incidence remained relatively stable in PWH, it slightly increased in those without HIV by the end of the study period. Mortality was highest in NHNT patients

    Spectral, Compositional, and Physical Properties of the Upper Murray Formation and Vera Rubin Ridge, Gale Crater, Mars

    Get PDF
    During 2018 and 2019, the Mars Science Laboratory Curiosity rover investigated the chemistry, morphology, and stratigraphy of Vera Rubin ridge (VRR). Using orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars, scientists attributed the strong 860 nm signal associated with VRR to the presence of red crystalline hematite. However, Mastcam multispectral data and CheMin X‐ray diffraction (XRD) measurements show that the depth of the 860 nm absorption is negatively correlated with the abundance of red crystalline hematite, suggesting that other mineralogical or physical parameters are also controlling the 860 nm absorption. Here, we examine Mastcam and ChemCam passive reflectance spectra from VRR and other locations to link the depth, position, and presence or absence of iron‐related mineralogic absorption features to the XRD‐derived rock mineralogy. Correlating CheMin mineralogy to spectral parameters showed that the ~860 nm absorption has a strong positive correlation with the abundance of ferric phyllosilicates. New laboratory reflectance measurements of powdered mineral mixtures can reproduce trends found in Gale crater. We hypothesize that variations in the 860 nm absorption feature in Mastcam and ChemCam observations of VRR materials are a result of three factors: (1) variations in ferric phyllosilicate abundance due to its ~800–1,000 nm absorption; (2) variations in clinopyroxene abundance because of its band maximum at ~860 nm; and (3) the presence of red crystalline hematite because of its absorption centered at 860 nm. We also show that relatively small changes in Ca‐sulfate abundance is one potential cause of the erosional resistance and geomorphic expression of VRR

    Mars Exploration Rover Pancam Multispectral Imaging of Rocks, Soils, and Dust at Gusev Crater and Meridiani Planum

    Get PDF
    Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials

    Diabetes Mellitus Type 2 as a Risk Factor and Outcome Modifier for Cryptococcosis in HIV Negative, Non-transplant Patients, a Propensity Score Match Analysis

    Get PDF
    Cryptococcosis is an opportunistic fungal infection of worldwide distribution with significant associated morbidity and mortality. HIV, organ transplantation, malignancy, cirrhosis, sarcoidosis, and immunosuppressive medications are established risk factors for cryptococcosis. Type 2 diabetes mellitus (DM2) has been hypothesized as a risk factor and an outcome modifier for cryptococcosis. We aimed to compare outcomes among HIV-negative, non-transplant (NHNT) patients with and without DM2. We queried a global research network to identify NHNT patients (n = 3280). We performed a propensity score-matched (PSM) analysis comparing clinical outcomes among cryptococcosis patients by DM status. We also characterize adults with cryptococcosis and DM2 as the only risk factor. After PSM, NHNT patients with DM2 were more likely to develop cognitive dysfunction [9% vs. 6%, OR 1.6; 95% CI (1.1–2.3); P = 0.01] but had similar mortality, hospitalization, ICU, and stroke risk after acquiring cryptococcosis when compared to NHNT patients without DM2. Pulmonary cryptococcosis was the most common site of infection. Among 44 cryptococcosis patients with DM2 as the only identifiable risk factor for disease, the annual incidence of cryptococcosis was 0.001%, with a prevalence of 0.002%. DM2 is associated with increased cognitive dysfunction risk in NHNT patients with cryptococcosis. It is rare for DM2 to be the only identified risk factor for developing cryptococcosis. Kidney disease, hyperglycemia, and immune dysfunction can increase the risk of cryptococcosis in patients with DM2

    Planetary Candidates Observed by Kepler IV: Planet Sample From Q1-Q8 (22 Months)

    Get PDF
    We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOI) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2,738 Kepler planet candidates distributed across 2,017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ~40% of the sample with Rp~1 Rearth and represent ~40% of the low equilibrium temperature (Teq<300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample.Comment: 12 pages, 8 figures, Accepted ApJ Supplemen

    Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity

    Get PDF
    Multispectral measurements in the visible and near infrared of rocks at Meridiani Planum by the Mars Exploration Rover Opportunity's Pancam are described. The Pancam multispectral data show that the outcrops of the Burns formation consist of two main spectral units which in stretched 673, 535, 432 nm color composites appear buff- and purple-colored. These units are referred to as the HFS and LFS spectral units based on higher and lower values of 482 to 535 nm slope. Spectral characteristics are consistent with the LFS outcrop consisting of less oxidized, and the HFS outcrop consisting of more oxidized, iron-bearing minerals. The LFS surfaces are not as common and appear, primarily, at the distal ends of outcrop layers and on steep, more massive surfaces, locations that are subject to greater eolian erosion. Consequently, the HFS surfaces are interpreted as a weathering rind. Further inherent spectral differences between layers and between different outcrop map units, both untouched and patches abraded by the rover's Rock Abrasion Tool, are also described. Comparisons of the spectral parameters of the Meridiani outcrop with a set of laboratory reflectance measurements of Fe^(3+)–bearing minerals show that the field of outcrop measurements plots near the fields of hematite, ferrihydrite, poorly crystalline goethite, and schwertmannite. Rind and fracture fill materials, observed intermittently at outcrop exposures, are intermediate in their spectral character between both the HFS and LFS spectral classes and other, less oxidized, surface materials (basaltic sands, spherules, and cobbles)

    Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    Get PDF
    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models

    Status of the MAJORANA DEMONSTRATOR experiment

    Full text link
    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.Comment: 8 pages, proceeding from VII International Conference on Interconnections between Particle Physics and Cosmology (PPC 2013), submitted to AIP proceeding
    corecore