100,390 research outputs found
SCUBA observations of the Horsehead Nebula - what did the horse swallow?
We present observations taken with SCUBA on the JCMT of the Horsehead Nebula
in Orion (B33), at wavelengths of 450 and 850 \mum. We see bright emission from
that part of the cloud associated with the photon-dominated region (PDR) at the
`top' of the horse's head, which we label B33-SMM1. We characterise the
physical parameters of the extended dust responsible for this emission, and
find that B33-SMM1 contains a more dense core than was previously suspected. We
compare the SCUBA data with data from the Infrared Space Observatory (ISO) and
find that the emission at 6.75-\mum is offset towards the west, indicating that
the mid-infrared emission is tracing the PDR while the submillimetre emission
comes from the molecular cloud core behind the PDR. We calculate the virial
balance of this core and find that it is not gravitationally bound but is being
confined by the external pressure from the HII region IC434, and that it will
either be destroyed by the ionising radiation, or else may undergo triggered
star formation. Furthermore we find evidence for a lozenge-shaped clump in the
`throat' of the horse, which is not seen in emission at shorter wavelengths. We
label this source B33-SMM2 and find that it is brighter at submillimetre
wavelengths than B33-SMM1. SMM2 is seen in absorption in the 6.75-\mum ISO
data, from which we obtain an independent estimate of the column density in
excellent agreement with that calculated from the submillimetre emission. We
calculate the stability of this core against collapse and find that it is in
approximate gravitational virial equilibrium. This is consistent with it being
a pre-existing core in B33, possibly pre-stellar in nature, but that it may
also eventually undergo collapse under the effects of the HII region.Comment: 11 pages, 6 figures, accepted by MNRA
A search for quasar protoclusters at z greater than 4
In the CDM and many other hierarchical scenarios for the origins of large scale structure, the existence of luminous quasars at very high redshifts (z greater than 3 or 4) is difficult to understand, unless such objects form at the very highest peaks of the density field. One then might expect a strong clustering of quasars at large redshifts. This is a generic prediction for practically any reasonable primordial density fluctuation spectrum. For CDM, Efstathiou & Rees (1988) predicted that quasars at z greater than 4 should be clustered as strongly as the bright galaxies at z approx. than 0. Cole & Kaiser (1989) suggest that z greater than 4 quasars might represent greater than or approximately = 4(sigma) peaks of the density field and thus, should be clustered more strongly than galaxies at z approximately = 0. We are performing the following experiment: a search for quasars, AGN, or other discrete objects, e.g., starforming galaxies, near known, z greater than 4 quasars. In other words, use the early quasars as markers of possible protoclusters. This is a fairly basic test of our understanding of the formation of galaxies, large-scale structure, and the origin of the first quasars themselves
SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 2. Appendix A: Design study for a SLEEC actuation system
The results are presented of a design feasibility study of a self-contained (powered) actuation system for a Shingle Lap Extendible Exit Cone (SLEEC) for Transportation System (STS). The evolution of the SLEEC actuation system design is reviewed, the final design concept is summarized, and the results of the detailed study of the final concept of the actuation system are treated. A conservative design using proven mechanical components was established as a major program priority. The final mechanical design has a very low development risk since the components, which consist of ballscrews, gearing, flexible shaft drives, and aircraft cables, have extensive aerospace applications and a history of proven reliability. The mathematical model studies have shown that little or no power is required to deploy the SLEEC actuation system because acceleration forces and internal pressure from the rocket plume provide the required energies. A speed control brake is incorporated in the design in order to control the rate of deployment
Two searches for primeval galaxies
A number of active galaxies are now known at very large redshifts, some of them even have properties suggestive of galaxies in the process of formation. They commonly show strong Ly-alpha emission, at least some of which appears to be ionized by young stars. Inferred star formation rates are in the range approximately = 100-500 solar mass/yr. An important question is: are there radio-quiet, field counterparts of these systems at comparable redshifts? Whereas, we are probably already observing some evolutionary and formative processes of distant radio galaxies, the ultimate goal is to observe normal galaxies at the epoch when most of their stars form. We have, thus, started a search for emission-line objects at large redshifts, ostensibly young and forming galaxies. Our method is to search for strong line emission (hopefully Ly alpha) employing two techniques: a direct, narrow-band imaging search, using a Fabry-Perot interferometer; and a serendipitous long-slit spectroscopic search
First Observations of the Magnetic Field Geometry in Pre-stellar Cores
We present the first published maps of magnetic fields in pre-stellar cores,
to test theoretical ideas about the way in which the magnetic field geometry
affects the star formation process. The observations are JCMT-SCUBA maps of 850
micron thermal emission from dust. Linear polarizations at typically ten or
more independent positions in each of three objects, L1544, L183 and L43 were
measured, and the geometries of the magnetic fields in the plane of the sky
were mapped from the polarization directions. The observed polarizations in all
three objects appear smooth and fairly uniform. In L1544 and L183 the mean
magnetic fields are at an angle of around 30 degrees to the minor axes of the
cores. The L43 B-field appears to have been influenced in its southern half,
such that it is parallel to the wall of a cavity produced by a CO outflow from
a nearby T Tauri star, whilst in the northern half the field appears less
disturbed and has an angle of 44 degrees to the core minor axis. We briefly
compare our results with published models of magnetized cloud cores and
conclude that no current model can explain these observations simultaneously
with previous ISOCAM data.Comment: 13 pages, 3 figs, to appear in ApJ Letter
Design of optimized three-dimensional thrust nozzle contours
Design of optimized three-dimensional thrust nozzle contour
Instability of Quark Matter Core in a Compact Newborn Neutron Star With Moderately Strong Magnetic Field
It is explicitly shown that if phase transition occurs at the core of a
newborn neutron star with moderately strong magnetic field strength, which
populates only the electron's Landau levels, then in the -equilibrium
condition, the quark core is energetically much more unstable than the neutron
matter of identical physical condition.Comment: Six pages REVTEX file, one .eps file (included
zCOSMOS: A large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field
zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation
with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS
galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic
information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOSbright,
a magnitude-limited I-band I_(AB) < 22.5 sample of about 20,000 galaxies with 0.1 < z < 1.2 covering the whole
1.7 deg^2 COSMOS ACS field, for which the survey parameters at z ~ 0.7 are designed to be directly comparable to
those of the 2dFGRS at z ~ 0.1; and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through
color-selection criteria to have 1.4 < z < 3.0, within the central 1 deg^2. This paper describes the survey design and the
construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first
observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained.
These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly
zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and
photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in
determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques
bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5 < z < 0.8
redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift
galaxies at 1.4 < z < 3.0 and of VIMOS to measure their redshifts using ultraviolet absorption lines
Semiconductor grade, solar silicon purification project
The conversion of metallurgical grade silicon into semiconductor grade silicon by way of a three step SiF2 polymer transport purification process was investigated. Developments in the following areas were also examined: (1) spectroscopic analysis and characterization of (SiF2) sub x polymer and Si sub x F sub y homologue conversion; (2) demonstration runs on the near continuous apparatus; (3) economic analysis; and (4) elemental analysis
- …
