151,127 research outputs found
"Only the Amblyrhynchus": Maria Graham’s scientific editing of Voyage of HMS Blonde (1826/27)
A conceptual treadmill: the need for ‘middle ground’ in clinical decision making theory in nursing
This paper explores the two predominant theoretical approaches to the process of nurse decision making prevalent within the nursing research literature: systematic-positivistic approaches as exemplifed by information processing theory, and the intuitive-humanistic approach of Patricia Benner. The two approaches' strengths and weaknesses are explored and as a result a third theoretical stance is proffered: the idea of a cognitive continuum. According to this approach the systematic and intuitive theoretical camps occupy polar positions at either end of a continuum as opposed to separate theoretical planes. The methodological and professional benefits of adopting such a stance are also briefly outlined
Acquiring Word-Meaning Mappings for Natural Language Interfaces
This paper focuses on a system, WOLFIE (WOrd Learning From Interpreted
Examples), that acquires a semantic lexicon from a corpus of sentences paired
with semantic representations. The lexicon learned consists of phrases paired
with meaning representations. WOLFIE is part of an integrated system that
learns to transform sentences into representations such as logical database
queries. Experimental results are presented demonstrating WOLFIE's ability to
learn useful lexicons for a database interface in four different natural
languages. The usefulness of the lexicons learned by WOLFIE are compared to
those acquired by a similar system, with results favorable to WOLFIE. A second
set of experiments demonstrates WOLFIE's ability to scale to larger and more
difficult, albeit artificially generated, corpora. In natural language
acquisition, it is difficult to gather the annotated data needed for supervised
learning; however, unannotated data is fairly plentiful. Active learning
methods attempt to select for annotation and training only the most informative
examples, and therefore are potentially very useful in natural language
applications. However, most results to date for active learning have only
considered standard classification tasks. To reduce annotation effort while
maintaining accuracy, we apply active learning to semantic lexicons. We show
that active learning can significantly reduce the number of annotated examples
required to achieve a given level of performance
Modelling of selection and mating decisions in tree breeding programs
Hardwood trees from the temperate forests of southern Australia are an important source of timber for high quality paper. Two species in particular, Eucalyptus globulus and Eucalyptus nitens are well suited to this purpose and are now widely grown in commercial plantations. These plantations have been established by professional tree breeders using seedlings derived originally from broadly based collection of seed in natural forests. To increase productivity it is desirable to select trees that grow quickly and give high yields of top quality timber. Nevertheless it is important to maintain genetic diversity in the breeding population and thereby retain a robust capacity to adapt to changing environmental factors. In this article we formulate a number of related mathematical models for the selection and mating processes and discuss the consequences of these models. We recommend a relatively simple scheme which can be implemented on an IBM compatible PC using standard algorithms
Modelling and optimal control of plate evaporators
Evaporators are an important stage in the extraction of sugar from sugar cane. A model of a simple evaporator is developed and then extended to multiple stage evaporation. An approximate solution and an iterative solution to the equations are developed. From the properties of these models a control strategy is developed
Study design and mark-recapture estimates of dispersal: A case study with the endangered damselfly Coenagrion mercuriale
Accurate data on dispersal ability are vital to the understanding of how species are affected by fragmented landscapes. However, three factors may limit the ability of field studies to detect a representative sample of dispersal events: (1) the number of individuals monitored, (2) the area over which the study is conducted and (3) the time over which the study is conducted. Using sub-sampling of mark-release-recapture data from a study on the endangered damselfly Coenagrion mercuriale (Charpentier), we show that maximum dispersal distance is strongly related to the number of recaptured individuals in the mark-release-recapture study and the length of time over which the study is conducted. Median dispersal distance is only related significantly to the length of the study. Spatial extent is not associated with either dispersal measure in our analysis. Previously consideration has been given to the spatial scale of dispersal experiments but we demonstrated conclusively that temporal scale and the number of marked individuals also have the potential to affect the measurement of dispersal. Based on quadratic relationships between the maximum dispersal distance, recapture number and length of study, we conclude that a previous study was of sufficient scale to characterise the dispersal kernel of C. mercuriale. Our method of analysis could be used to ensure that the results of mark-release-recapture studies are independent of levels of spatial and temporal investment. Improved confidence in dispersal estimates will enable better management decisions to be made for endangered species
Gas field scheduling
Woodside Offshore Petroleum is the operator in the development of new gas fields in Australia's North West Shelf project. Sequencing the development of new gas fields in this project is a key determinant of its return on investment. This development sequence has constraints imposed by infrastructure and contractual obligations as well as natural features. The determination of an optimal or very good solution may involve a number of techniques from operations research. The study group attempted several approaches to the problem, principal amongst them being mathematical programming and dynamic programming. A few other heuristic approaches were also considered. The mathematical programming approach was able to yield solutions to small instances of the problem. The group was able to identify several avenues for further research and work on the problem is ongoing
Control-structure-thermal interactions in analysis of lunar telescopes
The lunar telescope project was an excellent model for the CSTI study because a telescope is a very sensitive instrument, and thermal expansion or mechanical vibration of the mirror assemblies will rapidly degrade the resolution of the device. Consequently, the interactions are strongly coupled. The lunar surface experiences very large temperature variations that range from approximately -180 C to over 100 C. Although the optical assemblies of the telescopes will be well insulated, the temperature of the mirrors will inevitably fluctuate in a similar cycle, but of much smaller magnitude. In order to obtain images of high quality and clarity, allowable thermal deformations of any point on a mirror must be less than 1 micron. Initial estimates indicate that this corresponds to a temperature variation of much less than 1 deg through the thickness of the mirror. Therefore, a lunar telescope design will most probably include active thermal control, a means of controlling the shape of the mirrors, or a combination of both systems. Historically, the design of a complex vehicle was primarily a sequential process in which the basic structure was defined without concurrent detailed analyses or other subsystems. The basic configuration was then passed to the different teams responsible for each subsystem, and their task was to produce a workable solution without requiring major alterations to any principal components or subsystems. Consequently, the final design of the vehicle was not always the most efficient, owing to the fact that each subsystem design was partially constrained by the previous work. This procedure was necessary at the time because the analysis process was extremely time-consuming and had to be started over with each significant alteration of the vehicle. With recent advances in the power and capacity of small computers, and the parallel development of powerful software in structural, thermal, and control system analysis, it is now possible to produce very detailed analyses of intermediate designs in a much shorter period of time. The subsystems can thus be designed concurrently, and alterations in the overall design can be quickly adopted into each analysis; the design becomes an iterative process in which it is much easier to experiment with new ideas, configurations, and components. Concurrent engineering has the potential to produce efficient, highly capable designs because the effect of one subystem on another can be assessed in much more detail at a very early point in the program. The research program consisted of several tasks: scale a prototype telescope assembly to a 1 m aperture, develop a model of the telescope assembly by using finite element (FEM) codes that are available on site, determine structural deflections of the mirror surfaces due to the temperature variations, develop a prototype control system to maintain the proper shape of the optical elements, and most important of all, demonstrate the concurrent engineering approach with this example. In addition, the software used for the finite element models and thermal analysis was relatively new within the Program Development Office and had yet to be applied to systems this large or complex; understanding the software and modifying it for use with this project was also required. The I-DEAS software by Structural Dynamics Research Corporation (SDRC) was used to build the finite element models, and TMG developed by Maya Heat Transfer Technologies, Ltd. (which runs as an I-DEAS module) was used for the thermal model calculations. All control system development was accomplished with MATRIX(sub X) by Integrated Systems, Inc
- …
