1,841 research outputs found

    The Relationship Between Molecular Gas Tracers and Kennicutt-Schmidt Laws

    Full text link
    We provide a model for how Kennicutt-Schmidt (KS) laws, which describe the correlation between star formation rate and gas surface or volume density, depend on the molecular line chosen to trace the gas. We show that, for lines that can be excited at low temperatures, the KS law depends on how the line critical density compares to the median density in a galaxy's star-forming molecular clouds. High critical density lines trace regions with similar physical properties across galaxy types, and this produces a linear correlation between line luminosity and star formation rate. Low critical density lines probe regions whose properties vary across galaxies, leading to a star formation rate that varies superlinearly with line luminosity. We show that a simple model in which molecular clouds are treated as isothermal and homogenous can quantitatively reproduce the observed correlations between galactic luminosities in far infrared and in the CO(1->0) and HCN(1->0) lines, and naturally explains why these correlations have different slopes. We predict that IR-line luminosity correlations should change slope for galaxies in which the median density is close to the line critical density. This prediction may be tested by observations of lines such as HCO^+(1->0) with intermediate critical densities, or by HCN(1->0) observations of intensely star-forming high redshift galaxies with very high densities. Recent observations by Gao et al. hint at just such a change in slope. We argue that deviations from linearity in the HCN(1->0)-IR correlation at high luminosity are consistent with the assumption of a constant star formation efficiency.Comment: Accepted to ApJ. 11 pages, 4 figures, emulateapj format. This version has some additional models exploring the effects of varying metallicity and temperature. The conclusions are unchange

    Preliminary Report of Late Holocene Lake-level Variation in Southeastern Lake Superior Part II: Tahquamenon Bay, Michigan

    Get PDF
    Indiana Geological Survey Open-File Study 2001-4The internal architecture and age of development of 71 beach ridges in the Tahquamenon Bay embayment, located along the southeastern shore of Lake Superior on the Upper Peninsula of Michigan, were studied to generate a late Holocene relative lake-level curve for Lake Superior. The record from this embayment is important because Tahquamenon Bay is located near the outlet for Lake Superior and may have experienced similar vertical movement (isostatic uplift) rates as the outlet. The lakeward side of beach ridges were cored to obtain the elevation of basal foreshore deposits, which record the elevation of the lake when each beach ridge formed. Basal wetland sediments were collected from swales between ridges and radiocarbon dated to determine the age of the next lakeward adjacent beach ridge. Regression analysis of the calibrated dates was used to approximate the age of the beach ridges. Elevation data and age data were used to construct a relative lake-level curve for Tahquamenon Bay. Beach ridges in the Tahquamenon Bay embayment formed between about 4,300 and 2,000 calendar years before 1950 (cal. yrs. B.P.). The average timing for beach-ridge development of one ridge in the Tahquamenon Bay strandplain is 31 Ā± 3.7 years. Groupings of four to six beach ridges indicate longer-term fluctuations in lake levels. Basal foreshore elevations indicate relative lake levels dropped rapidly (almost 5 m) from about 4,100 to 3,800 cal. yrs. B.P., lowered gradually (approximately 7 m) from about 3,800 to 2,300 cal. yrs. B.P., and remained fairly constant from about 2,300 to 2,000 cal. yrs. B.P. The rapid drop is associated with a drop in water level from the Nipissing II high water-level phase, and the change from a gradual fall to a fairly constant slope is associated with an outlet change from Port Huron, Michigan, to Sault Ste. Marie, Michigan. Grain-size and foreshore thickness trends may be attributed to variations in sediment source or littoral currents or wave climate or outlet location or outflow characteristics or vertical movement between the study area and the outlet or a combination of these.United States Geological Survey Global Climate Change Program and United States Geological Survey Biological Research Agreement No. 98HQAG218

    Preliminary Report of Late Holocene Lake-Level Variation in Southern Lake Superior: Part 1

    Get PDF
    Indiana Geological Survey Open-File Study 99-18The internal architecture and age of development of 60 beach ridges in the Grand Traverse Bay embayment, located along the southern shore of Lake Superior on the Upper Peninsula of Michigan, were studied to generate a late Holocene relative lake-level curve for Lake Superior. Basal foreshore elevations, collected from the lakeward sides of beach ridges, were used to determine the relative elevation of Lake Superior when each beach ridge formed. The break in slope between each ridge and the lakeward swale was cored to ensure that the foreshore was penetrated and a maximum basal foreshore elevation was obtained. Basal wetland sediments, collected from swales between beach ridges, were dated to determine the age of adjacent lakeward beach ridges. Basal wetland sediments were recovered from the deepest part of selected swales along the coring transect. Basal wetland sediments provided a minimum age for the lakeward adjacent beach ridge and a least squares regression was used to reduce variability in the data and to approximate the age of unsampled wetlands. Beach ridges in the Grand Traverse Bay embayment formed between 900 and 3800 calendar years before 1950 (cal. yrs B.P.). The average timing for beach-ridge development of one ridge in the Grand Traverse Bay strandplain is 36 +/- 7.8 years. Groupings of four to six beach ridges indicate longer-term fluctuations in lake levels. Basal foreshore elevations indicate relative lake levels lowered about 4.5 m from 3800 to 1200 cal. yrs. B.P. and increased about 0.7 m from 1200 to 900 cal. yrs. B.P. A coarsening in foreshore mean grain-size per ridge also occurs at about 1200 cal. yrs. B.P. Foreshore thicknesses increase about 0.4 m from 2000 to 1200 cal. yrs. B.P. and remain fairly constant from about 1200 to 900 cal. yrs. B.P. Increased foreshore thicknesses indicate larger wave setup and may be related to a shift in the predominant wind direction that would produce greater wave setup in the Grand Traverse Bay embayment.United States Geological Survey Global Climate Change Program Agreement No. 98HQAG218

    The Spin Periods and Rotational Profiles of Neutron Stars at Birth

    Full text link
    We present results from an extensive set of one- and two-dimensional radiation-hydrodynamic simulations of the supernova core collapse, bounce, and postbounce phases, and focus on the protoneutron star (PNS) spin periods and rotational profiles as a function of initial iron core angular velocity, degree of differential rotation, and progenitor mass. For the models considered, we find a roughly linear mapping between initial iron core rotation rate and PNS spin. The results indicate that the magnitude of the precollapse iron core angular velocities is the single most important factor in determining the PNS spin. Differences in progenitor mass and degree of differential rotation lead only to small variations in the PNS rotational period and profile. Based on our calculated PNS spins, at ~ 200-300 milliseconds after bounce, and assuming angular momentum conservation, we estimate final neutron star rotation periods. We find periods of one millisecond and shorter for initial central iron core periods of below ~ 10 s. This is appreciably shorter than what previous studies have predicted and is in disagreement with current observational data from pulsar astronomy. After considering possible spindown mechanisms that could lead to longer periods we conclude that there is no mechanism that can robustly spin down a neutron star from ~ 1 ms periods to the "injection" periods of tens to hundreds of milliseconds observed for young pulsars. Our results indicate that, given current knowledge of the limitations of neutron star spindown mechanisms, precollapse iron cores must rotate with periods around 50-100 seconds to form neutron stars with periods generically near those inferred for the radio pulsar population.Comment: 31 pages, including 20 color figures. High-resolution figures available from the authors upon request. Accepted to Ap

    On the Conditions for Neutron-Rich Gamma-Ray Burst Outflows

    Full text link
    We calculate the structure and neutron content of neutrino-heated MHD winds driven from the surface of newly-formed magnetars (``proto-magnetars'') and from the midplane of hyper-accreting disks, two of the possible central engines for gamma-ray bursts (GRBs) and hyper-energetic supernovae (SNe). Both the surface of proto-magnetars and the midplane of neutrino-cooled accretion flows (NDAFs) are electron degenerate and neutron-rich (neutron-to-proton ratio n/p >> 1). If this substantial free neutron excess is preserved to large radii in ultra-relativistic outflows, several important observational consequences may result. Weak interaction processes, however, can drive n/p to ~1 in the nondegenerate regions that obtain just above the surfaces of NDAFs and proto-magnetars. Our calculations show that mildly relativistic neutron-rich outflows from NDAFs are possible in the presence of a strong poloidal magnetic field. However, we find that neutron-rich winds possess a minimum mass-loss rate that likely precludes simultaneously neutron-rich and ultra-relativistic (Lorentz factor > 100) NDAF winds accompanying a substantial accretion power. In contrast, proto-magnetars are capable of producing neutron-rich long-duration GRB outflows ~10-30 seconds following core bounce for sub-millisecond rotation periods; such outflows would, however, accompany only extremely energetic events, in which the GRB + SN energy budget exceeds ~ 4e52 ergs. Neutron-rich highly relativistic outflows may also be produced during some short-duration GRBs by geometrically thick accretion disks formed from compact object mergers. The implications for r-process nucleosynthesis, optical transients due to non-relativistic neutron-rich winds, and Nickel production in proto-magnetar and NDAF winds are also briefly discussed.Comment: 24 pages, 7 figures, submitted to Ap

    Reconstructing Paleo Lake Levels from Relict Shorelines along the Upper Great Lakes

    Get PDF
    Shorelines of the upper Great Lakes include many embayments that contain strandplains of beach ridges. These former shoreline positions of the lakes can be used to determine changes in the elevation of the lakes through time, and they also provide information on the warping of the ground surface that is occurring in the Great Lakes after the weight of glacial ice was removed. Relative lake-level hydrographs can be created by coring the beach ridges to determine the elevation of basal foreshore (swash zone) deposits in each ridge and by obtaining radiocarbon dates of basal wetland sediments between ridges to generate an age model for the ridges. Because the relative-level hydrographs are the combination of lake-level change and vertical ground movement (isostatic rebound), the rebound must be removed to produce a graph that shows only the physical limits and timing of past lake-level fluctuations referenced to a common outlet. More than 500 vibracores of beach-ridge sediments were collected at five sites along Lake Michigan and four sites along Lake Superior. The cores showed a sequence of dune deposits overlying foreshore deposits that, in turn, overlie upper shoreface deposits. The base of the foreshore deposits is coarser and more poorly sorted than an overlying and underlying sediment and represents the plunge-point sediments at the base of the swash zone. The plunge-point deposits are a close approximation of the elevation of the lake when the beach ridge formed. More than 150 radiocarbon ages of basal wetland sediments were collected to produce age models for the sites. Currently, age models exist for all Lake Michigan sites and one Lake Superior site. By combining the elevation data with the age models, six relative lake-level hydrographs were created for the upper Great Lakes. An iterative approach was used to remove rebound from the five Lake Michigan relative hydrographs and merge the graphs into a single hydrograph. The resultant hydrograph shows long-term patterns of lake-level change for lakes Michigan and Huron and is referenced to the Port Huron outlet. When the age models are completed for the Lake Superior sites, a hydrograph will be created for the entire lake

    Goal-directed attention alters the tuning of object-based representations in extrastriate cortex

    Get PDF
    Humans survive in environments that contain a vast quantity and variety of visual information. All items of perceived visual information must be represented within a limited number of brain networks. The human brain requires mechanisms for selecting only a relevant fraction of perceived information for more in-depth processing, where neural representations of that information may be actively maintained and utilized for goal-directed behavior. Object-based attention is crucial for goal-directed behavior and yet remains poorly understood. Thus, in the study we investigate how neural representations of visual object information are guided by selective attention. The magnitude of activation in human extrastriate cortex has been shown to be modulated by attention; however, object-based attention is not likely to be fully explained by a localized gain mechanism. Thus, we measured information coded in spatially distributed patterns of brain activity with fMRI while human participants performed a task requiring selective processing of a relevant visual object category that differed across conditions. Using pattern classification and spatial correlation techniques, we found that the direction of selective attention is implemented as a shift in the tuning of object-based information representations within extrastriate cortex. In contrast, we found that representations within lateral prefrontal cortex (PFC) coded for the attention condition rather than the concrete representations of object category. In sum, our findings are consistent with a model of object-based selective attention in which representations coded within extrastriate cortex are tuned to favor the representation of goal-relevant information, guided by more abstract representations within lateral PFC

    Cardiomyopathy Secondary to Thyroid and Parathyroid Dysfunction: Case Report and Literature Review

    Get PDF
    Heart failure due to metabolic derangements is not common in clinical practice. However, outcome is usually positive given that the precipitating factor is recognized and treatment is initiated in a timely fashion. We report an unusual case of reduced left ventricular systolic function as a result of hypocalcemia and long standing untreated primary hypothyroidism in a patient without structural heart disease. Delay in seeking appropriate medical attention for both disorders has culminated in cardiac dysfunction that was favorably altered with correction of underlying etiologies. Therefore, early recognition and expedient management of hypocalcemia and hypothyroidism can result in an imminent improvement of cardiac function

    Late Holocene Lake-level Variation in Southeastern Lake Superior: Tahquamenon Bay, Michigan

    Get PDF
    Internal architecture and ages of 71 beach ridges in the Tahquamenon Bay embayment along the southeastern shore of Lake Superior on the Upper Peninsula of Michigan were studied to generate a late Holocene relative lake-level curve. Establishing a long-term framework is important to examine the context of historic events and help predict potential future changes critical for effective water resource management. Ridges in the embayment formed between about 4,200 and 2,100 calendar years before 1950 (cal. yrs. B.P.) and were created and preserved every 28 Ā± 4.8 years on average. Groups of three to six beach ridges coupled with inflections in the lake-level curve indicate a history of lake levels fluctuations and outlet changes. A rapid lake-level drop (approximately 4 m) from about 4,100 to 3,800 cal. yrs. B.P. was associated with a fall from the Nipissing II high-water-level phase. A change from a gradual fall to a slight rise was associated with an outlet change from Port Huron, Michigan/Sarnia, Ontario to Sault Ste. Marie, Michigan/Ontario. A complete outlet change occurred after the Algoma high-water-level phase (ca. 2,400 cal. yrs. B.P.). Preliminary rates of vertical ground movement calculated from the strandplain are much greater than rates calculated from historical and geologic data. High rates of vertical ground movement could have caused tectonism in the Whitefish Bay area, modifying the strandplain during the past 2,400 years. A tectonic event at or near the Sault outlet also may have been a factor in the outlet change from Port Huron/Sarnia to Sault Ste. Marie

    Resting-state anticorrelations between medial and lateral prefrontal cortex: Association with working memory, aging, and individual differences

    Get PDF
    We examined how variation in working memory (WM) capacity due to aging or individual differences among young adults is associated with intrinsic or resting-state anticorrelations, particularly between (1) the medial prefrontal cortex (MPFC), a component of the default-mode network (DMN) that typically decreases in activation during external, attention-demanding tasks, and (2) the dorsolateral prefrontal cortex (DLPFC), a component of the fronto-parietal control network that supports executive functions and WM and typically increases in activation during attention-demanding tasks. We compared the magnitudes of MPFC-DLPFC anticorrelations between healthy younger and older participants (Experiment 1) and related the magnitudes of these anticorrelations to individual differences on two behavioral measures of WM capacity in two independent groups of young adults (Experiments 1 and 2). Relative to younger adults, older adults exhibited reductions in WM capacity and in MPFC-DLPFC anticorrelations. Within younger adults, greater MPFC-DLPFC anticorrelation at rest correlated with greater WM capacity. These findings show that variation in MPFC-DLPFC anticorrelations, whether related to aging or to individual differences, may reflect an intrinsic functional brain architecture supportive of WM capacity.National Institutes of Health (U.S.) (National Institute on Aging Grant R21 AG030770)National Institutes of Health (U.S.) (Grant T32 GM007484)Barbara J. Weedon Fund Fellowshi
    • ā€¦
    corecore