517 research outputs found

    A Role for Ethical Analysis in Social Research on Agrifood and Environmental Standards

    Get PDF
    Lawrence Busch claims that, although some philosophers may recognize the ethical import of standards, they do not endeavor to understand how people justify standards in social reality. The argument in this paper is that the Michigan State University (MSU) School of Agrifood Governance and Technoscience should actually be understood as fleshing out a more important role for ethicists. This argument is explored through an analysis of the MSU School’s research on standards, a reassessment of J.O. Urmson’s “On Grading,” and a review of major ethical theories, from utilitarianism to discourse ethics. The conclusion is that, though standards may be used and justified within social networks and worlds, there will always be points where their determination and application require discussion by stakeholders and other publics. It is at these points that the reasons offered in support of various standards should be subject to debate and skepticism, and the role of ethics as an activity is crucial in conjunction with social scientific research

    An Inviscid Decoupled Method for the Roe FDS Scheme in the Reacting Gas Path of FUN3D

    Get PDF
    An approach is described to decouple the species continuity equations from the mixture continuity, momentum, and total energy equations for the Roe flux difference splitting scheme. This decoupling simplifies the implicit system, so that the flow solver can be made significantly more efficient, with very little penalty on overall scheme robustness. Most importantly, the computational cost of the point implicit relaxation is shown to scale linearly with the number of species for the decoupled system, whereas the fully coupled approach scales quadratically. Also, the decoupled method significantly reduces the cost in wall time and memory in comparison to the fully coupled approach. This work lays the foundation for development of an efficient adjoint solution procedure for high speed reacting flow

    Modification of Proteins by Norepinephrine is Important for Vascular Contraction

    Get PDF
    Norepinephrine (NE) is thought to mediate its effects through G-protein coupled receptors. However, previous studies have shown that NE and another primary amine, serotonin, also have the ability to exert effects in a receptor-independent manner. We hypothesized that the enzyme transglutaminase II (TG II) has the ability to modify proteins with NE and that this modification is physiologically relevant. As our model we used rat aortic and vena cava tissues, two tissues that depend on NE to modulate vascular tone. Immunohistochemical and immunocytochemical staining showed that NE and TG II are present in smooth muscle cells of these tissues. Western analysis shows aorta and vena cava homogenate proteins are recognized by an antibody raised against NE conjugated to bovine serum albumin (NE-BSA). NE and α-actin colocalize in cultured aorta and vena cava smooth muscle cells. Freshly dissociated smooth muscle cells from these vessels were able to take up NE-biotin. In isolated tissue baths, inhibition of TG II with cystamine (0.5 mM) completely abolished NE-induced contraction in the aorta but only attenuated the receptor-independent contractant KCl (max contraction to 100 mM KCl in cystamine treated = 88.8 ± 7.0% of vehicle treated, p < 0.05). In the vena cava, contraction to NE was abolished with 0.1 mM cystamine and KCl contraction was attenuated (max contraction to 100 mM KCl in cystamine treated = 54.8 ± 7.0% of vehicle treated, p < 0.05). Taken together, these results show that vascular smooth muscle cells take up and utilize NE for the modification of proteins, and that this modification may play an important role in vascular contraction

    LAURA Users Manual: 5.6

    Get PDF
    This users manual provides in-depth information concerning installation and execution of Laura, version 5. Laura is a structured, multiblock, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 Laura code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent recompilations, providing more intuitive distribution of functionality, and simplifying inter- faces required for multi-physics coupling. As a result, Laura now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flow field radiation

    Sketch-To-Solution: An Exploration of Viscous CFD with Automatic Grids

    Get PDF
    Numerical simulation of the Reynolds-averaged NavierStokes (RANS) equations has become a critical tool for the design of aerospace vehicles. However, the issues that affect the grid convergence of three dimensional RANS solutions are not completely understood, as documented in the AIAA Drag Prediction Workshop series. Grid adaption methods have the potential for increasing the automation and discretization error control of RANS solutions to impact the aerospace design and certification process. The realization of the CFD Vision 2030 Study includes automated management of errors and uncertainties of physics-based, predictive modeling that can set the stage for ensuring a vehicle is in compliance with a regulation or specification by using analysis without demonstration in flight test (i.e., certification or qualification by analysis). For example, the Cart3D inviscid analysis package has automated Cartesian cut-cell gridding with output-based error control. Fueled by recent advances in the fields of anisotropic grid adaptation, error estimation, and geometry modeling, a similar work flow is explored for viscous CFD simulations; where a CFD application engineer provides geometry, boundary conditions, and flow parameters, and the sketch-to-solution process yields a CFD simulation through automatic, error-based, grid adaptation

    Withaferin A Effectively Targets Soluble Vimentin in the Glaucoma Filtration Surgical Model of Fibrosis

    Get PDF
    Withaferin A (WFA) is a natural product that binds to soluble forms of the type III intermediate filament (IF) vimentin. Currently, it is unknown under what pathophysiological contexts vimentin is druggable, as cytoskeltal vimentin-IFs are abundantly expressed. To investigate druggability of vimentin, we exploited rabbit Tenon\u27s capsule fibroblast (RbTCF) cell cultures and the rabbit glaucoma filtration surgical (GFS) model of fibrosis. WFA potently caused G₀/G₁ cell cycle inhibition (IC₅₀ 25 nM) in RbTCFs, downregulating ubiquitin E3 ligase skp2 and inducing p27(Kip1) expression. Transforming growth factor (TGF)-ß-induced myofibroblast transformation caused development of cell spheroids with numerous elongated invadopodia, which WFA blocked potently by downregulating soluble vimentin and α-smooth muscle actin (SMA) expression. In the pilot proof-of-concept study using the GFS model, subconjunctival injections of a low WFA dose reduced skp2 expression in Tenon\u27s capsule and increased p27(Kip1) expression without significant alteration to vimentin-IFs. This treatment maintains significant nanomolar WFA concentrations in anterior segment tissues that correspond to WFA\u27s cell cycle targeting activity. A ten-fold higher WFA dose caused potent downregulation of soluble vimentin and skp2 expression, but as found in cell cultures, no further increase in p27(Kip1) expression was observed. Instead, this high WFA dose potently induced vimentin-IF disruption and downregulated α-SMA expression that mimicked WFA activity in TGF-ß-treated RbTCFs that blocked cell contractile activity at submicromolar concentrations. These findings illuminate that localized WFA injection to ocular tissues exerts pharmacological control over the skp2-p27(Kip1) pathway by targeting of soluble vimentin in a model of surgical fibrosis

    T-infinity: The Dependency Inversion Principle for Rapid and Sustainable Multidisciplinary Software Development

    Get PDF
    The CFD Vision 2030 Study recommends that, NASA should develop and maintain an integrated simulation and software development infrastructure to enable rapid CFD technology maturation.... [S]oftware standards and interfaces must be emphasized and supported whenever possible, and open source models for noncritical technology components should be adopted. The current paper presents an approach to an open source development architecture, named T-infinity, for accelerated research in CFD leveraging the Dependency Inversion Principle to realize plugins that communicate through collections of functions without exposing internal data structures. Steady state flow visualization, mesh adaptation, fluid-structure interaction, and overset domain capabilities are demonstrated through compositions of plugins via standardized abstract interfaces without the need for source code dependencies between disciplines. Plugins interact through abstract interfaces thereby avoiding N 2 direct code-to-code data structure coupling where N is the number of codes. This plugin architecture enhances sustainable development by controlling the interaction between components to limit software complexity growth. The use of T-infinity abstract interfaces enables multidisciplinary application developers to leverage legacy applications alongside newly-developed capabilities. While rein, a description of interface details is deferred until the are more thoroughly tested and can be closed to modification
    • 

    corecore