778 research outputs found

    Mucopolysaccharidoses and the Blood-brain Barrier

    Get PDF
    Mucopolysaccharidoses comprise a set of genetic diseases marked by an enzymatic dysfunction in the degradation of glycosaminoglycans in lysosomes. There are eight clinically distinct types of mucopolysaccharidosis, some with various subtypes, based on which lysosomal enzyme is deficient and symptom severity. Patients with mucopolysaccharidosis can present with a variety of symptoms, including cognitive dysfunction, hepatosplenomegaly, skeletal abnormalities, and cardiopulmonary issues. Additionally, the onset and severity of symptoms can vary depending on the specific disorder, with symptoms typically arising during early childhood. While there is currently no cure for mucopolysaccharidosis, there are clinically approved therapies for the management of clinical symptoms, such as enzyme replacement therapy. Enzyme replacement therapy is typically administered intravenously, which allows for the systemic delivery of the deficient enzymes to peripheral organ sites. However, crossing the blood-brain barrier (BBB) to ameliorate the neurological symptoms of mucopolysaccharidosis continues to remain a challenge for these large macromolecules. In this review, we discuss the transport mechanisms for the delivery of lysosomal enzymes across the BBB. Additionally, we discuss the several therapeutic approaches, both preclinical and clinical, for the treatment of mucopolysaccharidoses

    Resistance to root-lesion nematode Pratylenchus neglectus identified in a new collection of two wild chickpea species (Cicer reticulatum and C. echinospermum) from Turkey

    Get PDF
    Abstract Chickpea (Cicer arietinum) is a major legume crop, with Australia being the second largest producer worldwide. Pratylenchus neglectus is a root-lesion nematode that invades, feeds and reproduces in roots of pulse and cereal crops. In Australia, chickpea and wheat (Triticum aestivum) are commonly grown in rotation and annual damage by P. neglectus accounts for large economic losses to both crops. Cultivated chickpea has narrow genetic diversity that limits the potential for improvement in resistance breeding. New collections of wild chickpea species, C. reticulatum and C. echinospermum, have substantially increased the previously limited world collection of wild Cicer germplasm and offer potential to widen the genetic diversity of cultivated chickpea through the identification of accessions with good resistance. This research assessed 243 C. reticulatum and 86 C. echinospermum accessions for response to P. neglectus in replicated experiments under controlled glasshouse conditions from 2013 and 2014 collection missions that were received, tested and analysed in two experimental sets. Multi-experiment analyses showed lower P. neglectus population densities in both sets of wild Cicer accessions tested than Australia's elite breeding cultivar PBA HatTrick at the significance level p < 0.05. Provisional resistance ratings were given to all genotypes tested in both experimental sets, with C. reticulatum accessions CudiB_008B and Kayat_066 rated as resistant in both Set 1 and Set 2. New sources of resistance to P. neglectus observed in this study can be introgressed into commercial chickpea cultivars to improve their resistance to this nematode

    MetaIPM: Placing Integral Projection Models Into a Metapopulation Framework

    Get PDF
    1. Metapopulation models include spatial population dynamics such as dispersion and migration between subpopulations. Integral projection models (IPMs) can include demographic rates as a function of size. Traditionally, metapopulation models do not included detailed populaiton models such as IPMs. In some situations, both local population dynamics (e.g. size-based survival) and spatial dynamics are important. 2. We present a Python package, MetaIPM, which places IPMs into a metapopulation framework, and allow users to readily construct and apply these models that combine local population dynamics within a metapopulation framework. 3. MetaIPM includes an IPM for each subpopulation that is connected to other subpopulations via a metapopulation movement model. These movements can include dispersion, migration or other patterns. The IPM can include for size-specific demographic rates (e.g. survival, recruitment) as well as management actions, such as length-based harvest (e.g. gear specific capture sizes, varying slot limits across political boundaries). The model also allows for changes in metapopulation connectivity between locations, such as a fish passage ladders to enhance movement or deterrents to reduce movement. Thus, resource managers can use MetaIPM to compare different management actions such as the harvest gear type (which can be length-specific) and harvest locations. 4. We demonstrate how MetaIPM may be applied to inform managers seeking to limit the spread of an invasive species in a system with important metapopulation dynamics. Specifically, we compared removal lengths (all length fish versus longer fish only) for an invasive fish population in a fragmented, inland river system. MetaIPM allowed users to compare the importance of harvesting source populations away from the invasion front, as well as species at the invasion front. The model would also allow for future comparisons of different deterrent placement locations in the system. 5. Moving beyond our example system, we describe how MetaIPM can be applied to other species, systems and management approaches. The MetaIPM packages includes Jupyter Notebooks documenting the package as well as a second set of JupyterNotebooks showing the application of the package to our example system

    Defective airway intraflagellar transport underlies a combined motile and primary ciliopathy syndrome caused by IFT74 mutations

    Get PDF
    Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3 kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some mis-orientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, that gives rise to a non-lethal primary skeletal ciliopathy combined with defective motile cilia and PCD

    Argininosuccinate Lyase Deficiency Causes Blood-Brain Barrier Disruption via Nitric Oxide-Mediated Dysregulation of Claudin Expression

    Get PDF
    Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity
    corecore