15,180 research outputs found

    SGR 1806-20 Is a Set of Independent Relaxation Systems

    Get PDF
    The Soft Gamma Repeater 1806-20 produced patterns of bursts during its 1983 outburst that indicate multiple independent energy accumulation sites, each driven by a continuous power source, with sudden, incomplete releases of the accumulated energy. The strengths of the power sources and their durations of activity vary over several orders of magnitude.Comment: Accepted ApJLett, 15 pages, 3 figure

    Duality Symmetric String and M-Theory

    Full text link
    We review recent developments in duality symmetric string theory. We begin with the world sheet doubled formalism which describes strings in an extended space time with extra coordinates conjugate to winding modes. This formalism is T-duality symmetric and can accommodate non-geometric T-fold backgrounds which are beyond the scope of Riemannian geometry. Vanishing of the conformal anomaly of this theory can be interpreted as a set of spacetime equations for the background fields. These equations follow from an action principle that has been dubbed Double Field Theory (DFT). We review the aspects of generalised geometry relevant for DFT. We outline recent extensions of DFT and explain how, by relaxing the so-called strong constraint with a Scherk Schwarz ansatz, one can obtain backgrounds that simultaneously depend on both the regular and T-dual coordinates. This provides a purely geometric higher dimensional origin to gauged supergravities that arise from non-geometric compactification. We then turn to M-theory and describe recent progress in formulating an E_{n(n)} U-duality covariant description of the dynamics. We describe how spacetime may be extended to accommodate coordinates conjugate to brane wrapping modes and the construction of generalised metrics in this extend space that unite the bosonic fields of supergravity into a single object. We review the action principles for these theories and their novel gauge symmetries. We also describe how a Scherk Schwarz reduction can be applied in the M-theory context and the resulting relationship to the embedding tensor formulation of maximal gauged supergravities.Comment: Review article. 122 pages. V2 Published Version in Physics Report

    A numerical study of an inline oscillating cylinder in a free stream

    Get PDF
    Simulations of a cylinder undergoing externally controlled sinusoidal oscillations in the free stream direction have been performed. The frequency of oscillation was kept equal to the vortex shedding frequency from a fixed cylinder, while the amplitude of oscillation was varied, and the response of the flow measured. With varying amplitude, a rich series of dynamic responses was recorded. With increasing amplitude, these states included wakes similar to the Kármán vortex street, quasiperiodic oscillations interleaved with regions of synchronized periodicity (periodic on multiple oscillation cycles), a period-doubled state and chaotic oscillations. It is hypothesized that, for low to moderate amplitudes, the wake dynamics are controlled by vortex shedding at a global frequency, modified by the oscillation. This vortex shedding is frequency modulated by the driven oscillation and amplitude modulated by vortex interaction. Data are presented to support this hypothesis

    Wake states and frequency selection of a streamwise oscillating cylinder

    Get PDF
    This paper presents the results of an in-depth study of the flow past a streamwise oscillating cylinder, examining the impact of varying the amplitude and frequency of the oscillation, and the Reynolds number of the incoming flow. These findings are presented in a framework that shows that the relationship between the frequency of vortex shedding fs and the amplitude of oscillation A* is governed by two primary factors: the first is a reduction of fs proportional to a series in A*2 over a wide range of driving frequencies and Reynolds numbers; the second is nonlinear synchronization when this adjusted fs is in the vicinity of N = (1 - fs/fd)-1, where N is an integer. Typically, the influence of higher-order terms is small, and truncation to the first term of the series (A*2) well represents the overall trend of vortex shedding frequency as a function of amplitude. However, discontinuous steps are overlaid on this trend due to the nonlinear synchronization. When fs is normalized by the Strouhal frequency fSt (the frequency of vortex shedding from an unperturbed cylinder), the rate at which fs/fSt decreases with amplitude, at least for fd/fSt = 1, shows a linear dependence on the Reynolds number. For a fixed Re = 175, the truncated series shows that the rate of decrease of fs/fSt with amplitude varies as (2 - fd/fSt)-1/2 for 1 < or egal fd/fSt < or egal 2, but is essentially independent of fd/fSt for fd/fSt < 1. These trends of the rate of decrease of fs with respect to amplitude are also used to predict the amplitudes of oscillation around which synchronization occurs. These predicted amplitudes are shown to fall in regions of the parameter space where synchronized modes occur. Further, for the case of varying fd/fSt, a very reasonable prediction of the amplitude of oscillation required for the onset of synchronization to the mode where fs = 0.5fd is given. In a similar manner, amplitudes at which fs = 0 are calculated, predicting where the natural vortex shedding is completely supplanted by the forcing. These amplitudes are found to coincide approximately with those at which the onset of a symmetric vortex shedding mode is observed. This result is interpreted as meaning that the symmetric shedding mode occurs when the dynamics crosses over from being dominated by the vortex shedding to being dominated by the forcing

    A ship-based methodology for high precision atmospheric oxygen measurements and its application in the Southern Ocean region

    Get PDF
    A method for achieving continuous high precision measurements of atmospheric O-2 is presented based on a commercially available fuel-cell instrument, (Sable Systems, Oxzilla FC-II) with a precision of 7 per meg (approximately equivalent to 1.2 ppm) for a 6-min measurement. The Oxzilla was deployed on two voyages in the Western Pacific sector of the Southern Ocean, in February 2003 and in April 2004, making these the second set of continuous O-2 measurements ever made from a ship. The results show significant temporal variation in O-2, in the order of +/- 10 per meg over 6-hourly time intervals, and substantial spatial variation. Data from both voyages show an O-2 maximum centred on 50 degrees S, which is most likely to be the result of biologically driven O-2 outgassing in the region of subtropical convergence around New Zealand, and a decreasing O-2 trend towards Antarctica. O-2 from the ship-based measurements is elevated compared with measurements from the Scripps Institution of Oceanography flask-sampling network, and the O-2 maximum is also not captured in the network observations. This preliminary study shows that ship-based continuous measurements are a valuable addition to current fixed site sampling programmes for the understanding of ocean-atmosphere O-2 exchange processes. [References: 39

    The gauge structure of generalised diffeomorphisms

    Full text link
    We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.Comment: 24 pp., plain tex, 1 figure. v2: minor changes, including a few added ref

    Table of contents and introductory materials for Vol. 40, no. 3, Summer 2013

    Get PDF
    This content includes the table of contents and editorial information

    Table of contents and editorial information for Vol. 39, no. 2, Spring 2012

    Get PDF
    Table of contents and editorial information for Vol. 39, no. 2, Spring 201
    corecore