6,045 research outputs found

    Canonical pure spinor (Fermionic) T-duality

    Full text link
    We establish that the recently discovered fermionic T-duality can be viewed as a canonical transformation in phase space. This requires a careful treatment of constrained Hamiltonian systems. Additionally, we show how the canonical transformation approach for bosonic T-duality can be extended to include Ramond--Ramond backgrounds in the pure spinor formalism.Comment: 14 page

    Renormalization of Lorentz non-invariant actions and manifest T-duality

    Full text link
    We study general two-dimensional sigma-models which do not possess manifest Lorentz invariance. We show how demanding that Lorentz invariance is recovered as an emergent on-shell symmetry constrains these sigma-models. The resulting actions have an underlying group-theoretic structure and resemble Poisson-Lie T-duality invariant actions. We consider the one-loop renormalization of these models and show that the quantum Lorentz anomaly is absent. We calculate the running of the couplings in general and show, with certain non-trivial examples, that this agrees with that of the T-dual models obtained classically from the duality invariant action. Hence, in these cases solving constraints before and after quantization are commuting operations.Comment: V2: reference added, version to appear in Nucl. Phys.

    Poking fun at the surface: exploring touch-point overloading on the multi-touch tabletop with child users

    Get PDF
    In this paper a collaborative game for children is used to explore touch-point overloading on a multi-touch tabletop. Understanding the occurrence of new interactional limitations, such as the situation of touch-point overloading in a multi-touch interface, is highly relevant for interaction designers working with emerging technologies. The game was designed for the Microsoft Surface 1.0 and during gameplay the number of simultaneous touch-points required gradually increases to beyond the physical capacity of the users. Studies were carried out involving a total of 42 children (from 2 different age groups) playing in groups of between 5-7 and all interactions were logged. From quantitative analysis of the interactions occurring during the game and observations made we explore the impact of overloading and identify other salient findings. This paper also highlights the need for empirical evaluation of the physical and cognitive limitations of interaction with emerging technologies

    Duality Symmetric String and M-Theory

    Full text link
    We review recent developments in duality symmetric string theory. We begin with the world sheet doubled formalism which describes strings in an extended space time with extra coordinates conjugate to winding modes. This formalism is T-duality symmetric and can accommodate non-geometric T-fold backgrounds which are beyond the scope of Riemannian geometry. Vanishing of the conformal anomaly of this theory can be interpreted as a set of spacetime equations for the background fields. These equations follow from an action principle that has been dubbed Double Field Theory (DFT). We review the aspects of generalised geometry relevant for DFT. We outline recent extensions of DFT and explain how, by relaxing the so-called strong constraint with a Scherk Schwarz ansatz, one can obtain backgrounds that simultaneously depend on both the regular and T-dual coordinates. This provides a purely geometric higher dimensional origin to gauged supergravities that arise from non-geometric compactification. We then turn to M-theory and describe recent progress in formulating an E_{n(n)} U-duality covariant description of the dynamics. We describe how spacetime may be extended to accommodate coordinates conjugate to brane wrapping modes and the construction of generalised metrics in this extend space that unite the bosonic fields of supergravity into a single object. We review the action principles for these theories and their novel gauge symmetries. We also describe how a Scherk Schwarz reduction can be applied in the M-theory context and the resulting relationship to the embedding tensor formulation of maximal gauged supergravities.Comment: Review article. 122 pages. V2 Published Version in Physics Report

    On Non-Abelian T-Duality and new N=1 backgrounds

    Full text link
    We study the action of non-Abelian T-duality in the context of N=1 geometries with well understood field theory duals. In the conformal case this gives rise to a new solution that contains an AdS_5 X S^2 piece. In the case of non-conformal geometries we obtain a new background in massive IIA supergravity that presents similar behaviour to the cascade of Seiberg dualities. Some physical observables are discussed.Comment: 13 pages, Latex. Version to appear in Physics Letters B (v2

    The Structure of the Tutte-Grothendieck Ring of Ribbon Graphs

    Get PDF
    W. H. Tutte\u27s 1947 paper on a ring generated by graphs satisfying a contraction-deletion relation is extended to ribbon graphs. This ring of ribbon graphs is a polynomial ring on an infinite set of one-vertex ribbon graphs

    T-duality Invariant Approaches to String Theory

    Get PDF
    This thesis investigates the quantum properties of T-duality invariant formalisms of String Theory. We introduce and review duality invariant formalisms of String Theory including the Doubled Formalism. We calculate the background field equations for the Doubled Formalism of Abelian T-duality and show how they are consistent with those of a conventional String Theory description of a toroidal compactification. We generalise these considerations to the case of Poisson--Lie T-duality and show that the system of renormalisation group equations obtained from the duality invariant parent theory are equivalent to those of either of the T-dual pair of sigma-models. In duality invariant formalisms it is quite common to loose manifest Lorentz invariance at the level of the Lagrangian. The lack of manifest invariance means that at the quantum level one might anticipate Lorentz anomalies and we show that such anomalies cancel non-trivially. These represent important and non-trivial consistency checks of the duality invariant approach to String Theory.Comment: PhD Thesis; 148 page

    The gauge structure of generalised diffeomorphisms

    Full text link
    We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.Comment: 24 pp., plain tex, 1 figure. v2: minor changes, including a few added ref
    • …
    corecore