13 research outputs found

    Macroscale and Nanoscale Photoelectrochemical Behavior of p-Type Si(111) Covered by a Single Layer of Graphene or Hexagonal Boron Nitride

    Get PDF
    Two-dimensional (2D) materials may enable a general approach to the introduction of a dipole at a semiconductor surface as well as control over other properties of the double layer at a semiconductor/liquid interface. Vastly different properties can be found in the 2D materials currently studied due in part to the range of the distribution of density-of-states. In this work, the open-circuit voltage (V_(oc)) of p-Si–H, p-Si/Gr (graphene), and p-Si/h-BN (hexagonal boron nitride) in contact with a series of one-electron outer-sphere redox couples was investigated by macroscale measurements as well as by scanning electrochemical cell microscopy (SECCM). The band gaps of Gr and h-BN (0–5.97 eV) encompass the wide range of band gaps for 2D materials, so these interfaces (p-Si/Gr and p-Si/h-BN) serve as useful references to understand the behavior of 2D materials more generally. The value of V_(oc) shifted with respect to the effective potential of the contacting solution, with slopes (ΔV_(oc)/ΔE_(Eff)) of −0.27 and −0.38 for p-Si/Gr and p-Si/h-BN, respectively, indicating that band bending at the p-Si/h-BN and p-Si/Gr interfaces responds at least partially to changes in the electrochemical potential of the contacting liquid electrolyte. Additionally, SECCM is shown to be an effective method to interrogate the nanoscale photoelectrochemical behavior of an interface, showing little spatial variance over scales exceeding the grain size of the CVD-grown 2D materials in this work. The measurements demonstrated that the polycrystalline nature of the 2D materials had little effect on the results and confirmed that the macroscale measurements reflected the junction behavior at the nanoscale

    Interfacial Behavior of 2D Materials in Devices for Solar Fuels and Sensing Applications

    Get PDF
    The field of 2D materials has expanded widely in the past 15 years to include many materials beyond graphene. However, the applications of graphene and its derivatives are still limited by the lack of thorough knowledge on how to successfully integrate a 2D material into a device while maintaining its unique properties. The work in this thesis investigates the application of 2D materials, such as graphene, fluorinated graphene, and hexagonal boron nitride, in solar fuels and sensing devices to reveal patterns that can inform device design with these and other materials in the future. In the second chapter, lightly fluorinated graphene is investigated as a protective layer on silicon photoanodes. This material is shown to possess superior abilities as a protective layer against oxidizing conditions as well as other deleterious surface reactions. The introduction of fluorine atoms to the lattice at postulated to terminate defects found along grain boundaries, leading to enhanced stability over 24h. The third chapter addresses the energetics of silicon/2D material/liquid junctions to elucidate how the density of states in these materials affect the formation of efficient charge-separation junctions. Hexagonal boron nitride on p-type silicon is shown to form a superior junction to graphene, as measured by changes in the open-circuit potential against a range of one-electron redox couples. Finally, chapter four shows the integration of a monolayer of graphene into a polymer-based chemiresistive vapor sensor to substantially enhance the signal of the sensor over the graphene or polymer alone. The response is dependent on strain at the graphene interface as demonstrated by Raman spectroscopy.</p

    Defect-Seeded Atomic Layer Deposition of Metal Oxides on the Basal Plane of 2D Layered Materials

    Get PDF
    Atomic layer deposition (ALD) on mechanically exfoliated 2D layered materials spontaneously produces network patterns of metal oxide nanoparticles in triangular and linear deposits on the basal surface. The network patterns formed under a range of ALD conditions and were independent of the orientation of the substrate in the ALD reactor. The patterns were produced on MoS2 or HOPG when either tetrakis(dimethylamido)titanium or bis(ethylcyclopentadienyl)manganese were used as precursors, suggesting that the phenomenon is general for 2D materials. Transmission electron microscopy revealed the presence, prior to deposition, of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition

    Macroscale and Nanoscale Photoelectrochemical Behavior of p-Type Si(111) Covered by a Single Layer of Graphene or Hexagonal Boron Nitride

    Get PDF
    Two-dimensional (2D) materials may enable a general approach to the introduction of a dipole at a semiconductor surface as well as control over other properties of the double layer at a semiconductor/liquid interface. Vastly different properties can be found in the 2D materials currently studied due in part to the range of the distribution of density-of-states. In this work, the open-circuit voltage (V_(oc)) of p-Si–H, p-Si/Gr (graphene), and p-Si/h-BN (hexagonal boron nitride) in contact with a series of one-electron outer-sphere redox couples was investigated by macroscale measurements as well as by scanning electrochemical cell microscopy (SECCM). The band gaps of Gr and h-BN (0–5.97 eV) encompass the wide range of band gaps for 2D materials, so these interfaces (p-Si/Gr and p-Si/h-BN) serve as useful references to understand the behavior of 2D materials more generally. The value of V_(oc) shifted with respect to the effective potential of the contacting solution, with slopes (ΔV_(oc)/ΔE_(Eff)) of −0.27 and −0.38 for p-Si/Gr and p-Si/h-BN, respectively, indicating that band bending at the p-Si/h-BN and p-Si/Gr interfaces responds at least partially to changes in the electrochemical potential of the contacting liquid electrolyte. Additionally, SECCM is shown to be an effective method to interrogate the nanoscale photoelectrochemical behavior of an interface, showing little spatial variance over scales exceeding the grain size of the CVD-grown 2D materials in this work. The measurements demonstrated that the polycrystalline nature of the 2D materials had little effect on the results and confirmed that the macroscale measurements reflected the junction behavior at the nanoscale

    Lightly Fluorinated Graphene as a Protective Layer for n-Type Si(111) Photoanodes in Aqueous Electrolytes

    Get PDF
    The behavior of n-Si(111) photoanodes covered by monolayer sheets of fluorinated graphene (F–Gr) was investigated under a range of chemical and electrochemical conditions. The electrochemical behavior of n-Si/F–Gr and np^+-Si/F–Gr photoanodes was compared to hydride-terminated n-Si (n-Si−H) and np+-Si−H electrodes in contact with aqueous Fe(CN)_6^(3-/4-) and Br_2/HBr electrolytes as well as in contact with a series of outer-sphere, one-electron redox couples in nonaqueous electrolytes. Illuminated n-Si/F–Gr and np^+-Si/F–Gr electrodes in contact with an aqueous K_3(Fe(CN)_6/K4(Fe(CN)_6 solutions exhibited stable short-circuit photocurrent densities of ∼10 mA cm^(–2) for 100,000 s (>24 h), in comparison to bare Si electrodes, which yielded nearly a complete photocurrent decay over ∼100 s. X-ray photoelectron spectra collected before and after exposure to aqueous anodic conditions showed that oxide formation at the Si surface was significantly inhibited for Si electrodes coated with F–Gr relative to bare Si electrodes exposed to the same conditions. The variation of the open-circuit potential for n-Si/F–Gr in contact with a series of nonaqueous electrolytes of varying reduction potential indicated that the n-Si/F–Gr did not form a buried junction with respect to the solution contact. Further, illuminated n-Si/F−Gr electrodes in contact with Br_2/HBr(aq) were significantly more electrochemically stable than n-Si−H electrodes, and n-Si/F−Gr electrodes coupled to a Pt catalyst exhibited ideal regenerative cell efficiencies of up to 5% for the oxidation of Br^– to Br_2

    Age-dependent white matter disruptions after military traumatic brain injury: Multivariate analysis results from ENIGMA brain injury

    Get PDF
    Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q \u3c 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans

    Efficient Bromination of Naphthalene Dianhydride and Microwave-Assisted Synthesis of Core-Brominated Naphthalene Diimides

    No full text
    <div><p></p><p>This article presents an efficient method for the synthesis of core-brominated naphthalene diimides (NDI) from naphthalene dianhydride (NDA). A procedure for monitoring the NDA bromination reaction by <sup>1</sup>H NMR spectroscopy is described, allowing for optimization and greater consistency of this reaction. Furthermore, the subsequent bis-imidization reaction of the brominated NDA product has been significantly enhanced using microwave-assisted conditions, with recovery of pure product via simple filtration in excess of 90% of theoretical yield. This chemistry offers greatly improved methodology for obtaining core-substituted NDI compounds with high efficiency and good yields.</p></div
    corecore