2,111 research outputs found

    Student Opinions and Preferences Regarding Personal Response Systems in the Graduate Physical Therapy Classroom: A Mixed-Methods Inquiry

    Get PDF
    Little investigation has been conducted on the use of Personal Response Systems (PRS) in either graduate-level courses or health professions education. Through anonymous participation in focus groups, graduate physical therapy students described specific aspects of PRS that they felt facilitated their learning, as well as aspects that hindered their learning. A Likert-type survey was constructed based on focus group outcomes and was offered to the entire population of physical therapy students at our institution. Results indicated that PRS was perceived to be useful for examination preparation, application of concepts, facilitation of discussion, and immediate feedback. Participants perceived cost and technical issues, including lack of faculty technical expertise, as problematic. Students exhibited a strong preference for ungraded in-class quizzes, followed by provision of these quizzes to students for later study. This unique mixed-method design maximized the use of online technology for obtaining both qualitative and quantitative outcomes

    Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum)

    Get PDF
    Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities

    Ubiquitous filter Feeders shape open ocean microbial community structure and function

    Get PDF
    The mechanism of mortality plays a large role in how microorganisms in the open ocean contribute to global energy and nutrient cycling. Salps are ubiquitous pelagic tunicates that are a well-known mortality source for large phototrophic microorganisms in coastal and high-latitude systems, but their impact on the immense populations of smaller prokaryotes in the tropical and subtropical open ocean gyres is not well quantified. We used robustly quantitative techniques to measure salp clearance and enrichment of specific microbial functional groups in the North Pacific Subtropical Gyre, one of the largest ecosystems on Earth. We discovered that salps are a previously unknown predator of the globally abundant nitrogen fixer Crocosphaera; thus, salps restrain new nitrogen delivery to the marine ecosystem. We show that the ocean’s two numerically dominant cells, Prochlorococcus and SAR11, are not consumed by salps, which offers a new explanation for the dominance of small cells in open ocean systems. We also identified a double bonus for Prochlorococcus, wherein it not only escapes salp predation but the salps also remove one of its major mixotrophic predators, the prymnesiophyte Chrysochromulina. When we modeled the interaction between salp mesh and particles, we found that cell size alone could not account for these prey selection patterns. Instead, the results suggest that alternative mechanisms, such as surface property, shape, nutritional quality, or even prey behavior, determine which microbial cells are consumed by salps. Together, these results identify salps as a major factor in shaping the structure, function, and ecology of open ocean microbial communities

    Selective and Differential Feeding on Marine Prokaryotes by Mucous Mesh Feeders

    Get PDF
    Microbial mortality impacts the structure of food webs, carbon flow, and the interactions that create dynamic patterns of abundance across gradients in space and time in diverse ecosystems. In the oceans, estimates of microbial mortality by viruses, protists, and small zooplankton do not account fully for observations of loss, suggesting the existence of underappreciated mortality sources. We examined how ubiquitous mucous mesh feeders (i.e. gelatinous zooplankton) could contribute to microbial mortality in the open ocean. We coupled capture of live animals by blue-water diving to sequence-based approaches to measure the enrichment and selectivity of feeding by two coexisting mucous grazer taxa (pteropods and salps) on numerically dominant marine prokaryotes. We show that mucous mesh grazers consume a variety of marine prokaryotes and select between coexisting lineages and similar cell sizes. We show that Prochlorococcus may evade filtration more than other cells and that planktonic archaea are consumed by macrozooplanktonic grazers. Discovery of these feeding relationships identifies a new source of mortality for Earth\u27s dominant marine microbes and alters our understanding of how top-down processes shape microbial community and function

    Integrating Oceanographic Research Into High School Curricula: Achieving Broader Impacts Through Systems Education Experiences Modules

    Get PDF
    We describe a framework for incorporating cross-disciplinary oceanographic research into high school curriculum modules and discuss how this framework could be adopted broadly by ocean scientists to build cohesive broader impacts programs nested within individual oceanographic research programs

    High Time for Conservation: Adding the Environment to the Debate on Marijuana Liberalization

    Get PDF
    The liberalization of marijuana policies, including the legalization of medical and recreational marijuana, is sweeping the United States and other countries. Marijuana cultivation can have significant negative collateral effects on the environment that are often unknown or overlooked. Focusing on the state of California, where by some estimates 60% -- 70% of the marijuana consumed in the United States is grown, we argue that (a) the environmental harm caused by marijuana cultivation merits a direct policy response, (b) current approaches to governing the environmental effects are inadequate, and (c) neglecting discussion of the environmental impacts of cultivation when shaping future marijuana use and possession policies represents a missed opportunity to reduce, regulate, and mitigate environmental harm

    Diverse and Variable Community Structure of Picophytoplankton across the Laurentian Great Lakes

    Get PDF
    The Laurentian Great Lakes provide economic support to millions of people, drive biogeochemical cycling, and are an important natural laboratory for characterizing the fundamental components of aquatic ecosystems. Small phytoplankton are important contributors to the food web in much of the Laurentian Great Lakes. Here, for the first time, we reveal and quantify eight phenotypically distinct picophytoplankton populations across the Lakes using a multilaser flow cytometry approach, which distinguishes cells based on their pigment phenotype. The distributions and diversity of picophytoplankton flow populations varied across lakes and depths, with Lake Erie standing out with the highest diversity. By sequencing sorted cells, we identified several distinct lineages of Synechococcales spanning Subclusters 5.2 and 5.3. Distinct genotypic clusters mapped to phenotypically similar flow populations, suggesting that there may not be a clear one-to-one mapping between genotypes and phenotypes. This suggests genome-level differentiation between lakes but some degree of phenotypic convergence in pigment characteristics. Our results demonstrate that ecological selection for locally adapted populations may outpace homogenization by physical transport in this interconnected system. Given the reliance of the Lakes on in situ primary production as a source for organic carbon, this work sets the foundation to test how the community structure of small primary producers corresponds to biogeochemical and food web functions of the Great Lakes and other freshwater systems

    The Living Together Arrangement: Social Work and the Lost Client

    Get PDF
    A recent research study suggests that persons living together outside of marriage do not view social work services as a potential source of help for problems brought into the living together arrangement, those common to all intimate long-range dyadic relationships or those directly related to choice of lifestyle. A multi-faceted approach is suggested which would aim at reaching this potential client group in a climate which will neither stigmatize or judge the alternate lifestyle or the persons who practice it

    The Influence of a Ubiquitous Filter Feeder on Coastal Microbial Communities.

    Get PDF
    Doliolids have a unique ability to impact the marine microbial community through bloom events and high filtration rates. Their predation on large eukaryotic microorganisms is established and evidence of predation on smaller prokaryotic microorganisms is beginning to emerge. We studied the retention of both eukaryotic and prokaryotic microbial taxa by wild-caught doliolids in the northern California Current system. We use qPCR to quantify the impact of doliolids on three important and globally abundant taxa: Synechococcus, SAR11 and diatoms. Doliolids were collected during bloom events identified at three different shelf locations with variable upwelling intensities. We discovered that in addition to eukaryotic phytoplankton, doliolids feed on a range of prokaryotic microbial functional groups. Prey included pelagic Archaea, Pelagibacter, and picocyanobacteria, expanding our understanding of doliolid feeding to the smallest and most numerous microbial community members of the ocean. We also found that doliolids retain SAR11, which is intriguing because some SAR11 lineages may evade predation by other benthic and pelagic tunicates through their surface properties. Given the ability of doliolids to clear large portions of seawater by filtration and their high abundance in this system, we suggest that doliolids are an important player in shaping microbial community structure, primary production, and carbon fate in an ecologically and economically important fisheries system
    • …
    corecore