71 research outputs found

    Midisuperspace-Induced Corrections to the Wheeler De Witt Equation

    Full text link
    We consider the midisuperspace of four dimensional spherically symmetric metrics and the Kantowski-Sachs minisuperspace contained in it. We discuss the quantization of the midisuperspace using the fact that the dimensionally reduced Einstein Hilbert action becomes a scalar-tensor theory of gravity in two dimensions. We show that the covariant regularization procedure in the midisuperspace induces modifications into the minisuperspace Wheeler DeWitt equation.Comment: 7 page

    TWO DIMENSIONAL DILATON GRAVITY COUPLED TO AN ABELIAN GAUGE FIELD

    Get PDF
    The most general two-dimensional dilaton gravity theory coupled to an Abelian gauge field is considered. It is shown that, up to spacetime diffeomorphisms and U(1)U(1) gauge transformations, the field equations admit a two-parameter family of distinct, static solutions. For theories with black hole solutions, coordinate invariant expressions are found for the energy, charge, surface gravity, Hawking temperature and entropy of the black holes. The Hawking temperature is proportional to the surface gravity as expected, and both vanish in the case of extremal black holes in the generic theory. A Hamiltonian analysis of the general theory is performed, and a complete set of (global) Dirac physical observables is obtained. The theory is then quantized using the Dirac method in the WKB approximation. A connection between the black hole entropy and the imaginary part of the WKB phase of the Dirac quantum wave functional is found for arbitrary values of the mass and U(1)U(1) charge. The imaginary part of the phase vanishes for extremal black holes and for eternal, non-extremal Reissner-Nordstrom black holes.Comment: Minor revisions only. Some references have been added, and some typographical errors correcte

    Observables for Two-Dimensional Black Holes

    Get PDF
    We consider the most general dilaton gravity theory in 1+1 dimensions. By suitably parametrizing the metric and scalar field we find a simple expression that relates the energy of a generic solution to the magnitude of the corresponding Killing vector. In theories that admit black hole solutions, this relationship leads directly to an expression for the entropy S=2πτ0/GS=2\pi \tau_0/G, where τ0\tau_0 is the value of the scalar field (in this parametrization) at the event horizon. This result agrees with the one obtained using the more general method of Wald. Finally, we point out an intriguing connection between the black hole entropy and the imaginary part of the ``phase" of the exact Dirac quantum wave functionals for the theory.Comment: 14 pages, late

    Geometrodynamics of Schwarzschild Black Holes

    Full text link
    The curvature coordinates T,RT,R of a Schwarz\-schild spacetime are turned into canonical coordinates T(r),R(r)T(r), {\sf R}(r) on the phase space of spherically symmetric black holes. The entire dynamical content of the Hamiltonian theory is reduced to the constraints requiring that the momenta PT(r),PR(r)P_{T}(r), P_{\sf R}(r) vanish. What remains is a conjugate pair of canonical variables mm and pp whose values are the same on every embedding. The coordinate mm is the Schwarzschild mass, and the momentum pp the difference of parametrization times at right and left infinities. The Dirac constraint quantization in the new representation leads to the state functional Ψ(m;T,R]=Ψ(m)\Psi (m; T, {\sf R}] = \Psi (m) which describes an unchanging superposition of black holes with different masses. The new canonical variables may be employed in the study of collapsing matter systems.Comment: 44 pages, Latex file, UU-REL-94/3/

    Integrable models and degenerate horizons in two-dimensional gravity

    Get PDF
    We analyse an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville fields in conformal gauge. Its general solution represents a pair of ``mirror'' black holes with the same temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the Schwarzschild-de Sitter case. The existence of ϕ=const.\phi=const. solutions and their relation with the solution given by the 2D Birkhoff's theorem is then investigated in a more general context. We also point out some interesting features of the semiclassical theory of our model and the similarity with the behaviour of AdS2_2 black holes.Comment: Latex, 16 pages, 1 figur

    Quantum Decay of Domain Walls in Cosmology II: Hamiltonian Approach

    Get PDF
    This paper studies the decay of a large, closed domain wall in a closed universe. Such walls can form in the presence of a broken, discrete symmetry. We study a novel process of quantum decay for such a wall, in which the vacuum fluctuates from one discrete state to another throughout one half of the universe, so that the wall decays into pure field energy. Equivalently, the fluctuation can be thought of as the nucleation of a second closed domain wall of zero size, followed by its growth by quantum tunnelling and its collision with the first wall, annihilating both. We therefore study the 2-wall system coupled to a spherically symmetric gravitational field. We derive a simple form of the 2-wall action, use Dirac quantization, obtain the 2-wall wave function for annihilation, find from it the barrier factor for this quantum tunneling, and thereby get the decay probability. This is the second paper of a series.Comment: 27 pages LaTeX, using revtex and psfig. 3 figure

    de Broglie-Bohm Interpretation for the Wave Function of Quantum Black Holes

    Get PDF
    We study the quantum theory of the spherically symmetric black holes. The theory yields the wave function inside the apparent horizon, where the role of time and space coordinates is interchanged. The de Broglie-Bohm interpretation is applied to the wave function and then the trajectory picture on the minisuperspace is introduced in the quantum as well as the semi-classical region. Around the horizon large quantum fluctuations on the trajectories of metrics UU and VV appear in our model, where the metrics are functions of time variable TT and are expressed as ds2=α2/UdT2+UdR2+VdΩ2ds^2=-{\alpha^2}/U dT^2 + U dR^2 + V d\Omega^2. On the trajectories, the classical relation U=V1/2+2GmU=-V^{1/2}+2Gm holds, and the event horizon U=0 corresponds to the classical apparent horizon on V=2GmV=2Gm. In order to investigate the quantum fluctuation near the horizon, we study a null ray on the dBB trajectory and compare it with the one in the classical black hole geometry.Comment: 20 pages, Latex, 7 Postscript figure

    Quantum gravity corrections to the Schwarzschild mass

    Get PDF
    Vacuum spherically symmetric Einstein gravity in N4N\ge 4 dimensions can be cast in a two-dimensional conformal nonlinear sigma model form by first integrating on the (N2)(N-2)-dimensional (hyper)sphere and then performing a canonical transformation. The conformal sigma model is described by two fields which are related to the Arnowitt-Deser-Misner mass and to the radius of the (N2)(N-2)-dimensional (hyper)sphere, respectively. By quantizing perturbatively the theory we estimate the quantum corrections to the ADM mass of a black hole.Comment: 18 pages, 8 figures, LaTeX2e, uses epsfig package, accepted for publication in Phys. Rev.

    Graded Poisson-Sigma Models and Dilaton-Deformed 2D Supergravity Algebra

    Get PDF
    Fermionic extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. In addition, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to algebras which can be interpreted as supergravities in the usual sense (Neuveu-Schwarz or Ramond algebras resp.), deformed by the presence of the dilaton field. With very straightforward and natural assumptions on them --like demanding rigid supersymmetry in a certain flat limit, or linking the anti-commutator of certain fermionic charges to the Hamiltonian constraint-- in the ``genuine'' supergravity obtained in this way the ambiguities disappear, as well as the obstructions referred to above. Thus all especially interesting bosonic models (spherically reduced gravity, the Jackiw-Teitelboim model etc.)\ under these conditions possess a unique fermionic extension and are free from new singularities. The superspace supergravity model of Howe is found as a special case of this supergravity action. For this class of models the relation between bosonic potential and prepotential does not introduce obstructions as well.Comment: 22 pages, LaTeX, JHEP class. v3: Final version, to appear in JHE

    Conformal anomaly for 2d and 4d dilaton coupled spinors

    Get PDF
    We study quantum dilaton coupled spinors in two and four dimensions. Making classical transformation of metric, dilaton coupled spinor theory is transformed to minimal spinor theory with another metric and in case of 4d spinor also in the background of the non-trivial vector field. This gives the possibility to calculate 2d and 4d dilaton dependent conformal (or Weyl) anomaly in easy way. Anomaly induced effective action for such spinors is derived. In case of 2d, the effective action reproduces, without any extra terms, the term added by hands in the quantum correction for RST model, which is exactly solvable. For 4d spinor the chiral anomaly which depends explicitly from dilaton is also found. As some application we discuss SUSY Black Holes in dilatonic supergravity with WZ type matter and Hawking radiation in the same theory. As another application we investigate spherically reduced Einstein gravity with 2d dilaton coupled fermion anomaly induced effective action and show the existence of quantum corrected Schwarszchild-de Sitter (SdS) (Nariai) BH with multiple horizon.Comment: LaTeX file, 15 page
    corecore