9 research outputs found

    Evaluation of Small Form Factor Fiber Optic Interconnects for the NASA Electronics Parts and Packaging Program (NEPP)

    Get PDF
    The Diamond AVIM optical fiber connector has been used for over a decade in flight environments. AVIM which stands for Aviation Intermediate Maintenance is always referenced as a fiber optic connector type from the DIN (Deutsches Institut fur Normung) family of optical fiber connectors. The newly available Mini AVIM and DMI (Definition Multimedia Interface) connectors also by Diamond provide similar features as the high performance AVIM with the added benefits of being small form factor for board mount and internal box use where long connectors and strain relief can not be accommodated. Transceiver, fiber laser technology and receiver optic technology based on small sized constraints will benefit the most by the reduction in connector form factor. It is for this reason that the Mini AVIM is being evaluated for multimode and single mode optical fiber use in both fiber based and cable based packaging configurations. In a fiber based termination, there are no cable materials to bond to the connector. The only bonding that is conducted is the mounting of the fiber with epoxy to the connector ferrules (which are called DMI ferrules). In a cable configuration, the compatibility of the connector subcomponents along with the upjacketing materials of the cable around the fiber needs to be considered carefully for termination fabrication. Cabled terminations will show greater insertion loss and high probability of failures during thermal cycling testing. This is due to the stressing of the combination of materials that each have different Coefficients of Thermal Expansion (CTE's) and that are bonded together to the connector subcomponents. As the materials flex during thermal excursions, forces are applied to the termination and can make the system fail if the grouping of materials (per their CTE's) are not compatible and this includes cable materials, epoxies, ferrule and connector body components. For this evaluation, multimode 100 micron core step index fiber was used for the fiber terminated condition, and single mode SMF-28 upjacketed with W.L. Gore Flexlite was used for the cabled configuration. For background purposes, a comparison is presented here for information purposes between the high performance AVIM connector features and the Mini AVIM small form factor connectors. Basic connector features are described here

    Space Flight Optoelectronics and Photonics Qualification

    Get PDF
    The Photonics group top level processes regarding development and qualification of space flight hardware for optoelectronic components along with our contributions and successes with LIDAR systems, space flight reliability heritage, and our testing capabilities are conveyed with this power point presentation

    Optical System Design and Integration of the Global Ecosystem Dynamics Investigation Lidar

    No full text
    The Global Ecosystem Dynamics Investigation (GEDI) instrument was designed, built, and tested in-house at NASAs Goddard Space Flight Center and launched to the International Space Station (ISS) on December 5, 2018. GEDI is a multi-beam waveform LiDAR (light detection and ranging) designed to measure the Earths global tree height and canopy density using 8 laser beam ground tracks separated by roughly 600 meters. Given the ground coverage required and the 2 year mission duration, a unique optical design solution was developed. GEDI generates 8 ground sampling tracks from 3 transmitter systems viewed by a single receiver telescope, all while maximizing system optical efficiency and transmitter to receiver boresight alignment margin. The GEDI optical design, key optical components, and system level integration and testing are presented here. GEDI began 2 years of science operations in March 2019 and so far, it is meeting all of its key optical performance requirements and is returning outstanding science

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore