3,224 research outputs found

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time

    Full text link
    Thomassen characterized some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph is drawable in straight-lines if and only if it does not contain the configuration [C. Thomassen, Rectilinear drawings of graphs, J. Graph Theory, 10(3), 335-341, 1988]. In this paper, we characterize some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph can be re-embedded into a straight-line drawable 1-plane embedding of the same graph if and only if it does not contain the configuration. Re-embedding of a 1-plane embedding preserves the same set of pairs of crossing edges. We give a linear-time algorithm for finding a straight-line drawable 1-plane re-embedding or the forbidden configuration.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016). This is an extended abstract. For a full version of this paper, see Hong S-H, Nagamochi H.: Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time, Technical Report TR 2016-002, Department of Applied Mathematics and Physics, Kyoto University (2016

    Boxicity of graphs on surfaces

    Get PDF
    The boxicity of a graph G=(V,E)G=(V,E) is the least integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1...EkE=E_1 \cap ... \cap E_k. Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ\Sigma of genus gg is at most 5g+35g+3. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.Comment: 9 pages, 2 figure

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    From paradox to pattern shift: Conceptualising liminal hotspots and their affective dynamics

    Get PDF
    This article introduces the concept of liminal hotspots as a specifically psychosocial and sociopsychological type of wicked problem, best addressed in a process-theoretical framework. A liminal hotspot is defined as an occasion characterised by the experience of being trapped in the interstitial dimension between different forms-of-process. The paper has two main aims. First, to articulate a nexus of concepts associated with liminal hotspots that together provide general analytic purchase on a wide range of problems concerning “troubled” becoming. Second, to provide concrete illustrations through examples drawn from the health domain. In the conclusion, we briefly indicate the sense in which liminal hotspots are part of broader and deeper historical processes associated with changing modes for the management and navigation of liminality

    Can GPR4 be a potential therapeutic target for COVID-19?

    Get PDF
    This study was supported in part by the North Carolina COVID-19 Special State Appropriations. Research in the author's laboratory was also supported by a grant from the National Institutes of Health (R15DK109484, to LY).Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first emerged in late 2019 and has since rapidly become a global pandemic. SARS-CoV-2 infection causes damages to the lung and other organs. The clinical manifestations of COVID-19 range widely from asymptomatic infection, mild respiratory illness to severe pneumonia with respiratory failure and death. Autopsy studies demonstrate that diffuse alveolar damage, inflammatory cell infiltration, edema, proteinaceous exudates, and vascular thromboembolism in the lung as well as extrapulmonary injuries in other organs represent key pathological findings. Herein, we hypothesize that GPR4 plays an integral role in COVID-19 pathophysiology and is a potential therapeutic target for the treatment of COVID-19. GPR4 is a pro-inflammatory G protein-coupled receptor (GPCR) highly expressed in vascular endothelial cells and serves as a “gatekeeper� to regulate endothelium-blood cell interaction and leukocyte infiltration. GPR4 also regulates vascular permeability and tissue edema under inflammatory conditions. Therefore, we hypothesize that GPR4 antagonism can potentially be exploited to mitigate the hyper-inflammatory response, vessel hyper-permeability, pulmonary edema, exudate formation, vascular thromboembolism and tissue injury associated with COVID-19.ECU Open Access Publishing Support Fun

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    On a Tree and a Path with no Geometric Simultaneous Embedding

    Full text link
    Two graphs G1=(V,E1)G_1=(V,E_1) and G2=(V,E2)G_2=(V,E_2) admit a geometric simultaneous embedding if there exists a set of points P and a bijection M: P -> V that induce planar straight-line embeddings both for G1G_1 and for G2G_2. While it is known that two caterpillars always admit a geometric simultaneous embedding and that two trees not always admit one, the question about a tree and a path is still open and is often regarded as the most prominent open problem in this area. We answer this question in the negative by providing a counterexample. Additionally, since the counterexample uses disjoint edge sets for the two graphs, we also negatively answer another open question, that is, whether it is possible to simultaneously embed two edge-disjoint trees. As a final result, we study the same problem when some constraints on the tree are imposed. Namely, we show that a tree of depth 2 and a path always admit a geometric simultaneous embedding. In fact, such a strong constraint is not so far from closing the gap with the instances not admitting any solution, as the tree used in our counterexample has depth 4.Comment: 42 pages, 33 figure
    corecore