21,923 research outputs found

    Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation

    Get PDF
    It has recently been shown [Weber, T. C. et al. (Year: 2007). “Acoustic propagation through clustered bubble clouds,” IEEE J. Ocean. Eng.32, 513–523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400kHz) multibeam sonar, and reports on observations of near-surface bubbleclustering during a storm ( 14.6m∕s wind speed) in the Gulf of Maine. The multibeam sonardata are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective mediumwave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350kHz . Results for this specific case show that clusteringcan cause the attenuation to change by 20%–80% over this frequency range

    Twisted submanifolds of R^n

    Full text link
    We propose a general procedure to construct noncommutative deformations of an embedded submanifold MM of Rn\mathbb{R}^n determined by a set of smooth equations fa(x)=0f^a(x)=0. We use the framework of Drinfel'd twist deformation of differential geometry of [Aschieri et al., Class. Quantum Gravity 23 (2006), 1883]; the commutative pointwise product is replaced by a (generally noncommutative) ⋆\star-product determined by a Drinfel'd twist. The twists we employ are based on the Lie algebra Ξt\Xi_t of vector fields that are tangent to all the submanifolds that are level sets of the faf^a; the twisted Cartan calculus is automatically equivariant under twisted tangent infinitesimal diffeomorphisms. We can consistently project a connection from the twisted Rn\mathbb{R}^n to the twisted MM if the twist is based on a suitable Lie subalgebra e⊂Ξt\mathfrak{e}\subset\Xi_t. If we endow Rn\mathbb{R}^n with a metric then twisting and projecting to the normal and tangent vector fields commute, and we can project the Levi-Civita connection consistently to the twisted MM, provided the twist is based on the Lie subalgebra k⊂e\mathfrak{k}\subset\mathfrak{e} of the Killing vector fields of the metric; a twisted Gauss theorem follows, in particular. Twisted algebraic manifolds can be characterized in terms of generators and polynomial relations. We present in some detail twisted cylinders embedded in twisted Euclidean R3\mathbb{R}^3 and twisted hyperboloids embedded in twisted Minkowski R3\mathbb{R}^3 [these are twisted (anti-)de Sitter spaces dS2,AdS2dS_2,AdS_2].Comment: Latex file, 48 pages, 1 figure. Slightly adapted version to the new preprint arXiv:2005.03509, where the present framework is specialized to quadrics and other algebraic submanifolds of R^n. Several typos correcte

    Calibration of multibeam echo sounders: a comparison between two methodologies

    Get PDF
    Multibeam echo sounders (MBES) are widely used in applications like seafloor imaging, fisheries, and habitat mapping. Calibration of acoustic backscatter is an important aspect of understanding and validating the performance of a MBES. Combined transmit/receive beampattern calibrations were performed on a 200 kHz Reson Seabat 7125 MBES in the acoustic tank of the University of New Hampshire utilizing two different methodologies. The first methodology employs fixed standard target spheres and a high accuracy/high resolution rotation mechanism. This method, similar to that proposed by Foote et al [ Protocols forcalibrating multibeam sonar , J. Acoust. Soc. Am. 117(4), 2005], is designed for a calibrationtank and provides accurate results but requires a large amount of operation time and cannot be performed in situ. The second methodology has been designed for field calibration of MBES. It employs a standard target sphere and a 200 kHz Simrad EK60 split-beam sonar system to provide athwartship and alongship angular information of the target sphere position. This method offers the possibility of field calibration for vessel mounted systems and a significantly reduced operation time, but has a potential reduction in accuracy. In this paper, results from these two methods applied to the same MBES are compared

    A Method for Field Calibration of a Multibeam Echo Sounder

    Get PDF
    The use of multibeam echo sounders (MBES) has grown more frequent in applications like seafloor imaging, fisheries, and habitat mapping. Calibration of these instruments is important for understanding and validating the performance of MBES. For echo sounders in general, different calibration methodologies have been developed in controlled environments such as a fresh water tank and in the actual field of operation. While calibration in an indoor tank facility can bring excellent results in terms of accuracy, the amount of time required for a complete calibration can become prohibitively large. A field calibration can reveal the actual radiation beam pattern for shipmounted sonar systems, accounting for acoustic interferences which may be caused by objects around the installed transducers. The standard target method is a common practice for field calibration of split-beam echo sounders. However, when applied to a Mills Cross MBES, this method does not provide means to determine the alongship angle of the target, since the receiver transducer is a line array. A method to determine the combined transmit/receive radiation beam pattern for a ship-mounted multibeam system was developed and tested for a Reson Seabat 7125 MBES inside the fresh water calibration tank of the University of New Hampshire. This calibration methodology employs a tungsten carbide sphere of 38.1 mm diameter as target and a Simrad EK60 split-beam sonar system to provide athwartship and alongship angular information of the target sphere position. The multibeam sonar system was configured for 256 beams equi-angle mode at an operating frequency of 200 kHz; the split-beam system was set to work passively at the same frequency. A combined transmit/receive beam pattern was computed for an athwartship angular range between –6o and +6o and an alongship angular range between –1o and +3o . The limited angular range of the measurements is due to the –3 dB beamwidth of 7.1o in the athwartship and alongship directions of the split-beam sonar system coupled with the alongship offset of 1.6o between the maximum response axes (MRA) of the two sonar systems. Possible acoustic interferences caused by the monofilament line used to suspend the target sphere in the water column were found in the measurements for alongship angle values less than –1o . Beam pattern measurements for the combined transmit/receive beam pattern at a distance of 8 m show a –3 dB beamwidth of 1.1o in the athwartship direction and a –3 dB beamwidth of 2.0o in the alongship direction for the most inner beams. The dynamic range for the measurements was approximately of –40 dB

    Tranching and Pricing in CDO-Transactions

    Get PDF
    This paper empirically investigates the tranching and tranche pricing of European securitization transactions of corporate loans and bonds. Tranching allows the originator to issue bonds with strong quality differences and thereby attract heterogeneous investors. We find that the number of differently rated tranches in a transaction is inversely related to the quality of the underlying asset pool. Credit spreads on tranches in a transaction are inversely related to the number of tranches. The average price for transferring a unit of expected default risk, paid in a transaction, is inversely related to the default probability of the underlying asset pool. The average price, paid for a tranche, increases with the rating of the tranche, it is higher for the lowest rated tranche and very high for AAA-tranches in true sale-transactions. It varies little across butterfly spreads obtained from rated tranches except for the most senior spread.Securitization, information asymmetries, tranching of asset portfolios, risk premiums of tranches

    Constraints on the High-Density Nuclear Equation of State from Neutron Star Observables

    Full text link
    Depending on the density reached in the cores of neutron stars, such objects may contain stable phases of novel matter found nowhere else in the Universe. This article gives a brief overview of these phases of matter and discusses astrophysical constraints on the high-density equation of state associated with ultra-dense nuclear matter.Comment: 16 pages, 11 figures, Contribution to Proceedings of the 3rd International Workshop on Astronomy and Relativistic Astrophysics (IWARA), 3-6 October 2007, Joao Pessoa, Brazi

    Observations of Backscatter from Sand and Gravel Seafloors Between 170-250 kHz

    Get PDF
    Interpreting observations of frequency-dependence in backscatter from the seafloor offers many challenges, either because multiple frequencies are used for different observations that will later be merged or simply because seafloor scattering models are not well-understood above 100 kHz. Hindering the understanding of these observations is the paucity of reported, calibratedacoustic measurements above 100 kHz. This manuscript seeks to help elucidate the linkages between seafloor properties and frequency-dependent seafloor backscatter by describing observations of backscatter collected from sand, gravel, and bedrock seafloors at frequencies between 170 and 250 kHz and at a grazing angle of 45°. Overall, the frequency dependence appeared weak for all seafloor types, with a slight increase in seafloor scattering strength with increasing frequency for an area with unimodal, very poorly to moderately well sorted, slightly granular to granular medium sand with significant amounts of shell debris and a slight decrease in all other locations

    Three years of experience with the STELLA robotic observatory

    Get PDF
    Since May 2006, the two STELLA robotic telescopes at the Izana observatory in Tenerife, Spain, delivered an almost uninterrupted stream of scientific data. To achieve such a high level of autonomous operation, the replacement of all troubleshooting skills of a regular observer in software was required. Care must be taken on error handling issues and on robustness of the algorithms used. In the current paper, we summarize the approaches we followed in the STELLA observatory

    Emergence of novel magnetic order at finite temperature in overdoped pnictides

    Full text link
    We examine the temperature dependence of the magnetic ordering in the frustrated Heisenberg J1−J2J_1-J_2 model in presence of two different kind of dopants: vacancies or magnetic impurities. We demonstrate that, irrespective to their magnetic ratio, the introduction of impurities quenches the order by disorder selection mechanism associated with an Ising-like phase transition at low temperatures and gives way to a 90∘90^\circ (anticollinear) order . The presence of dopants triggers a non trivial competition between entropically selected states (collinear) and energetically favoured ones (anticollinear) in dependence of both dilution and temperature. While in case of magnetic impurity, the interesting magnetic phases are observed for full range of temperature and doping, in case of nonmagnetic impurities every magnetic order is destroyed at all temperatures above 12%12\% dilution. At fixed low temperature and tuning the doping we show a first order phase transition leading to the re-entrance of the Ising-like order with percolation of islands of 90∘90^\circ order. At fixed doping and varying the temperature we observe a transition from the anticollinear to the collinear phase assisted by a new emerging magnetic phase in the presence of magnetic impurities, whilst in case of vacancies this transition is characterised by a coexistent region of both. Furthermore, tuning the magnetic moment of the impurities, a complete collapse of the Ising-like order is attained. This is in agreement with observations of Ir dopant atoms in superconducting Ba(Fe1−x_{1-x}Irx_x)2_2As2_2 with x<0.047x<0.047

    Using Multibeam Echosounders for Hydrographic Surveying in the Water Column: Estimating Wreck Least Depths

    Get PDF
    Wreck superstructure can extend into the water column and pose a danger to navigation if the least depth is not accurately portrayed to mariners. NOAA has several methods available to acquire a wreck least depth: lead line, wire drag, diver investigation, side scan shadow length, single beam bathymetry, and multibeam bathymetry. Previous studies have demonstrated that the bottom detection algorithm can fail to locate a wreck mast that is evident in the water column data. Modern multibeam sonars can record water column data in addition to bottom detections. NOAA’s current Hydrographic Specifications do not require water column collection; the best practice is to collect additional bathymetry data during wreck developments. Several multibeam bathymetry and multibeam water column datasets collected by NOAA vessels are evaluated and the wreck least depth results are compared to previous international field trials. A workflow to extract filtered and sidelobe suppressed water column point clouds is presented using currently available software packages. This paper explores the challenges encountered with water column data collection and processing and finds that analysis of water column data provides an improvement to finding wreck least depths, in some cases
    • 

    corecore