94 research outputs found

    Water-Soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution, and Distribution

    Get PDF
    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport

    Emissions from Miombo Woodland and Dambo Grassland Savanna Fires

    Get PDF
    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May–October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia

    Distributions of Trace Gases and Aerosols During the Dry Biomass Burning Season in Southern Africa

    Get PDF
    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 μg m−3, and 13.2 and 14.3 μg m−3). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 μg m−3, and 6400 cm−3, respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 310 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 ± 8 ppmv), CO (261 ± 81 ppbv), SO2 (2.5 ± 1.6 ppbv), O3 (64 ± 13 ppbv), black particulate carbon (2.3 ± 1.9 μg m−3), organic particulate carbon (6.2 ± 5.2 μg m−3), total particle mass (26.0 ± 4.7 μg m−3), and potassium particles (0.4 ± 0.1 μg m−3) were comparable to those in polluted, urban air. Since the majority of the measurements in this study were obtained in locations well removed from industrial sources of pollution, the high average concentrations of pollutants reflect the effects of widespread biomass burning. On occasions, relatively thin (∼0.5 km) layers of remarkably clean air were located at ∼3 km above mean sea level, sandwiched between heavily polluted air. The data presented here can be used for inputs to and validation of regional and global atmospheric chemical models

    Aerosol Properties and Chemical Apportionment of Aerosol Optical Depth at Locations off the U.S. East Coast in July and August 2001

    Get PDF
    Airborne in situ measurements of vertical profiles of the aerosol light scattering coefficient, light absorption coefficient, and single scattering albedo (ω0) are presented for locations off the East Coast of the United States in July–August 2001. The profiles were obtained in relatively clean air, dominated by airflows that had passed over Canada and the Atlantic Ocean. Comparisons of aerosol optical depths (AODs) at 550 nm derived from airborne in situ and sun-photometer measurements agree, on average, to within 0.034 ± 0.021. A frequency distribution of ω0 measured in the atmospheric boundary layer off the coast yields an average value of ω0 = 0.96 ± 0.03 at 550 nm. Values for the mass scattering efficiencies of sulfate and total carbon (organic and black carbon) derived from a multiple linear regression are 6.0 ± 1.0 m2 (g SO=4)−1 and 2.6 ± 0.9 m2 (g C)−1, respectively. Measurements of sulfate and total carbon mass concentrations are used to estimate the contributions of these two major components of the submicron aerosol to the AOD. Mean percentage contributions to the AOD from sulfate, total carbon, condensed water, and absorbing aerosols are 38% ± 8%, 26% ± 9%, 32% ± 9%, and 4% ± 2%, respectively. The sensitivity of the above results to the assumed values of the hygroscopic growth factors for the particles are examined and it is found that, although the AOD derived from the in situ measurements can vary by as much as 20%, the average value of ω0 is not changed significantly. The results are compared with those obtained in the same region in 1996 under more polluted conditions

    Evolution of Gases and Particles from a Savanna Fire in South Africa

    Get PDF
    Airborne measurements of particles and gases from a 1000-ha savanna fire in South Africa are presented. These measurements represent the most extensive data set reported on the aging of biomass smoke. The measurements include total concentrations of particles (CN), particle sizes, particulate organic carbon and black carbon, light-scattering coefficients, downwelling UV fluxes, and mixing ratios for 42 trace gases and 7 particulate species. The ratios of excess nitrate, ozone, and gaseous acetic acid to excess CO increased significantly as the smoke aged over ∼40–45 min, indicating that these species were formed by photochemistry in the plume. For 17 other species, the excess mixing ratio normalized by the excess mixing ratio of CO decreased significantly with smoke age. The relative rates of decrease for a number of chemical species imply that the average OH concentration in the plume was ∼1.7 × 107 molecules cm−3. Excess CN, normalized by excess CO, decreased rapidly during the first ∼5 min of aging, probably due to coagulation, and then increased, probably due to gas-to-particle conversion. The CO-normalized concentrations of particles \u3c1.5 μm in diameter decreased, and particles \u3e1.5 μm diameter increased, with smoke age. The spectral depletion of solar radiation by the smoke is depicted. The downwelling UV flux near the vertical center of the plume was about two-thirds of that near the top of the plume
    • …
    corecore