2,214 research outputs found

    Enzymatic Determination of Hydroxysteroids in Human Skin Surface Lipids

    Get PDF

    The Dynamic Organization of the Perinucleolar Compartment in the Cell Nucleus

    Get PDF
    The perinucleolar compartment (PNC) is a unique nuclear structure preferentially localized at the periphery of the nucleolus. Several small RNAs transcribed by RNA polymerase III (e.g., the Y RNAs, MRP RNA, and RNase P H1 RNA) and the polypyrimidine tract binding protein (PTB; hnRNP I) have thus far been identified in the PNC (Ghetti, A., S. PinolRoma, W.M. Michael, C. Morandi, and G. Dreyfuss. 1992. Nucleic Acids Res. 20:3671–3678; Matera, A.G., M.R. Frey, K. Margelot, and S.L. Wolin. 1995. J. Cell Biol. 129:1181–1193; Lee, B., A.G. Matera, D.C. Ward, and J. Craft. 1996. Proc. Natl. Acad. Sci. USA. 93: 11471–11476). In this report, we have further characterized this structure in both fixed and living cells. Detection of the PNC in a large number of human cancer and normal cells showed that PNCs are much more prevalent in cancer cells. Analysis through the cell cycle using immunolabeling with a monoclonal antibody, SH54, specifically recognizing PTB, demonstrated that the PNC dissociates at the beginning of mitosis and reforms at late telophase in the daughter nuclei. To visualize the PNC in living cells, a fusion protein between PTB and green fluorescent protein (GFP) was generated. Time lapse studies revealed that the size and shape of the PNC is dynamic over time. In addition, electron microscopic examination in optimally fixed cells revealed that the PNC is composed of multiple strands, each measuring ∼80–180 nm diam. Some of the strands are in direct contact with the surface of the nucleolus. Furthermore, analysis of the sequence requirement for targeting PTB to the PNC using a series of deletion mutants of the GFP–PTB fusion protein showed that at least three RRMs at either the COOH or NH2 terminus are required for the fusion protein to be targeted to the PNC. This finding suggests that RNA binding may be necessary for PTB to be localized in the PNC

    Tag-based modules in genetic programming

    Full text link
    In this paper we present a new technique for evolving mod-ular programs with genetic programming. The technique is based on the use of “tags ” that evolving programs may use to label and later to refer to code fragments. Tags may refer inexactly, permitting the labeling and use of code fragments to co-evolve in an incremental way. The technique can be implemented as a minor modification to an existing, general purpose genetic programming system, and it does not re-quire pre-specification of the module architecture of evolved programs. We demonstrate that tag-based modules readily evolve and that this allows problem solving effort to scale well with problem size. We also show that the tag-based module technique is effective even in complex, non-uniform problem environments for which previous techniques per-form poorly. We demonstrate the technique in the context of the stack-based genetic programming system PushGP, but we also briefly discuss ways in which it may be used with other kinds of genetic programming systems

    RNA-binding protein CPEB1 remodels host and viral RNA landscapes.

    Get PDF
    Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3' untranslated regions (3' UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections

    Early Postoperative Exposure to High-Fat Diet Does Not Increase Long-Term Weight Loss or Fat Avoidance After Roux-en-Y Gastric Bypass in Rats

    Full text link
    BackgroundBariatric surgery alters food preferences in rats and reportedly decreases desire to consume high-fat high-sugar food in humans. The aim of this study was to investigate whether early post-operative exposure to high-fat food could increase body weight loss after Roux-en-Y gastric bypass (RYGB) by triggering fat avoidance.MethodsMale Wistar rats underwent either RYGB (n = 15) or sham-operations (n = 16). Preoperatively a standardized 4-choice cafeteria diet [dietary options: low-fat/low-sugar (LFLS), low-fat/high-sugar (LFHS), high-fat/low-sugar (HFLS), high-fat/high-sugar (HFHS)] was offered. First, each option was available for 4 days, thereafter rats were offered the 4 options simultaneously for 3 days preoperatively. Post-surgery, 8 rats in the RYGB- and 8 in the sham-group were exposed to a high-fat content diet (Oatmeal + 30% lard, OM+L) for 10 days, while 7 RYGB rats and 8 sham-rats received OM alone. From the 11th postoperative day, the 4-choice cafeteria diet was reintroduced for 55-days. The intake of all available food items, macronutrients and body weight changes were monitored over 8 weeks. Main outcomes were long-term body-weight and daily change in relative caloric intake during the postoperative cafeteria period compared to the preoperative cafeteria.ResultsDuring the first 12 days of postoperative cafeteria access, RYGB-rats exposed to OM+L had a higher mean caloric intake per day than RYGB rats exposed to OM alone (Δ10 kCal, Padj_{adj} = 0.004), but this difference between the RYGB groups disappeared thereafter. Consequently, in the last 33 days of the postoperative cafeteria diet, the mean body weight of the RYGB+OM+L group was higher compared to RYGB+OM (Δ51 g, Padj_{adj} < 0.001). RYGB rats, independently from the nutritional intervention, presented a progressive decrease in daily consumption of calories from fat and increased their daily energy intake mainly from non-sugar carbohydrates. No such differences were detected in sham-operated controls exposed to low- or high fat postoperative interventions.ConclusionA progressive decrease in daily fat intake over time was observed after RYGB, independently from the nutritional intervention. This finding confirms that macronutrient preferences undergo progressive changes over time after RYGB and supports the role of ingestive adaptation and learning. Early postoperative exposure to high-fat food failed to accentuate fat avoidance and did not lead to superior weight loss in the long-term
    corecore