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A Constructive Interpretation of Ramsey’s Theorem via the

Product of Selection Functions

Paulo Oliva and Thomas Powell

Abstract

We use Gödel’s dialectica interpretation to produce a computational version of the well
known proof of Ramsey’s theorem by Erdős and Rado. Our proof makes use of the product
of selection functions, which forms an intuitive alternative to Spector’s bar recursion when
interpreting proofs in analysis. This case study is another instance of the application of proof
theoretic techniques in mathematics.

1 Introduction

In a fundamental paper of the 1950s [15, 16], Kreisel first suggested utilising proof interpreta-
tions to systematically ‘unwind’ non-constructive proofs and discover their constructive content.
Kreisel’s pioneering work forms the foundation of modern applied proof theory (in the sense of
[13]) which has seen variants of Gödel’s functional interpretation used to produce improved results
in areas such as numerical analysis and ergodic theory through the extraction of computational
content from classical proofs.

This proof mining program, as it is known today, has generally focused on developing gen-
eral metatheorems that guarantee the extractability of effective uniform bounds from proofs of
theorems of a specific logical form - usually relatively simple Π2 theorems for which direct compu-
tational data can be found. In other words, on the whole proof interpretations have been applied
to extract purely quantitative information from a fairly restricted class of theorems. However,
the last decade has seen proof interpretations employed much more widely, with an increasing
emphasis on understanding the qualitative aspects of interpreted proofs.

There are two main reasons for this. The first is a greater appreciation of the mathematical
significance of proof interpretations. It was recently observed (e.g. [13]) that the monotone
variant of Gödel’s dialectica interpretation is closely related to the so-called ‘correspondence
principle’ between finite and infinite dynamical systems as discussed by T. Tao in [22, Chapter
1.3]. This observation lies behind current applications of the dialectica interpretation in ergodic
theory (see e.g. Avigad [1]), which in particular explore the dialectica interpretation of Cauchy
convergence, known to mathematicians as metastability.

The second reason is an improved understanding of the semantics of proof interpretations.
Formal translations on proofs are highly syntactic and in particular the functional interpretation
of proofs that make use of full arithmetic comprehension traditionally involves Spector’s abstruse
bar recursion schema. Consequently, realisers for interpreted proofs are often stated as almost
unreadable higher type terms. This issue is addressed in recent work by the authors and M.
Escardó [7, 9], who show that the product of selection functions provides us with an intuitive
alternative to bar recursion that can be understood in terms of the computation of optimal
strategies in a certain class of sequential games. This makes it easier to appreciate the operational
behaviour of realisers of interpreted theorems in analysis.

Therefore the authors believe that it is both practical and meaningful to apply proof interpre-
tations to classical proofs with the object of producing a mathematical proof of a new, finitary
theorem, as opposed to just extracting a new piece of quantitative information. In this article

1



we apply Gödel’s dialectica interpretation to Erdős and Rado’s proof of Ramsey’s theorem for
pairs, similarly to what has been done in [14, 17]. Our main aim here, however, is to produce an
intuitive combinatorial proof of the finitary form of the Ramsey’s theorem given in Section 1.2.
For that purpose, we endeavour to strip our proof of heavy logical syntax in order to understand
it in mathematical terms. In a broader sense our aim is to portray the dialectica interpretation as
an intelligent translation on proofs as opposed to just a syntactic translation on logical formulas.

The paper is organised as follows. We begin by formulating Ramsey’s theorem and its proof
in the language of formal arithmetic. We then briefly discuss the main building block of our
extracted proof, the product of selection functions, and in Section 4 we prove our finitary version
of the theorem. Finally, we discuss a game theoretic reading of our proof.

1.1 Preliminaries

In this article we assume that the reader is familiar with Gödel’s dialectica interpretation of
classical proofs (cf. [2, 13] and the original paper [12]), by which we implicitly mean Gödel’s
dialectica interpretation combined as usual with the negative translation1. We do not assume
familiarity with the authors’ recent work on the product of selection functions - although the
reader is encouraged to consult [9] for a more detailed treatment of the results mentioned in
Section 3.

The theory PAω is Peano arithmetic in all finite types, and T is Gödel’s quantifier-free theory
of higher-type primitive recursive functionals (see [2] for full definitions). We make informal use
of types like the Booleans B = {0, 1} and finite sequence types X∗.

Notation. We use the following abbreviations:

s ∗ t is the concatenation of sequences s and t.

ŝ ≡ s ∗ 0X
N

a canonical infinite extension of a finite sequence s.

[αX
N
](n) ≡ 〈α0, . . . , α(n− 1)〉 is the initial segment of α of length n.

Finally, we make use of the following key logical principles. Π0
1 countable choice is given by

the schema
Π0

1-AC0 : ∀n∃xX∀yYAn(x, y)→ ∃αN→X∀n, yAn(αn, y),

where the An are quantifier-free, weak König’s lemma is the statement that any infinite decidable
binary tree T has an infinite branch:

WKL : ∀n∃sB
∗
(|s| ∧ T (s))→ ∃αN→B∀nT ([α](n)),

and the infinite pigeonhole principle states that for any n-colouring c of the natural numbers, at
least one colour x is used infinitely often:

IPHP : ∀cN→[n]∃x, pN→N∀k(pk ≥ k ∧ c(pk) = x).

Note that of these only IPHP is provable in PAω

1.2 Ramsey’s theorem for pairs

In this article we only consider Ramsey’s theorem for pairs and 2-colourings on the basis that
our results can be extended to the more general theorem, although in the course of our program
extraction we hint at how key steps can be generalised for the n-colour case.

Let [N]2 denote the set of subsets of N of size two, and suppose we are given a colouring
c : [N]2 → B of [N]2 with two colours. Ramsey’s theorem says that for any such colouring there

1As in [13] we adopt Kuroda’s variant of the negative translation.
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exists an infinite pairwise monochromatic subset of N i.e. an infinite set S ⊆ N such that all
elements of [S]2 have colour x for some x ∈ B. Formally, we write Ramsey’s theorem as

RT2
2(c) : ∃xB∃FN→N∀k(Fk ≥ k ∧ ∀i, j ≤ k(Fi < Fj → c({Fi, Fj}) = x)).

Here the infinite monochromatic set is encoded by the function F and is given by SF = {Fk : k ∈
N}. Our main result is a constructive proof of the dialetica interpretation of RT2

2(c):

Main Theorem. Suppose the colouring c is fixed. For any functional η : B × NN → N there
exists a colour x : B and a function F : N→ N satisfying

∀k ≤ ηxF (Fk ≥ k ∧ ∀i, j ≤ k(Fi < Fj → c({Fi, F j}) = x)). (1)

As with all Σ2 theorems, the functional interpretation of Ramsey’s theorem coincides with
Kreisel’s no-counterexample interpretation (n.c.i.). The intuition is that the counterexample
functions η0 and η1 attempt to show that for any F the set SF cannot be pairwise monochromatic,
and we are challenged to effectively refute any such counterexample functions. Alternatively, we
can view η as a function that specifies in advance how we want to “use” Ramsey’s theorem in
a specific computation: while in general there is no effective way of realising Ramsey’s theorem,
given η we can produce an approximation to a monochromatic set that is sufficient for the
computation we have in mind.

1.3 Comparison to existing work

Ramsey’s theorem has been extensively studied in logic, so it is important to outline how our
work contrasts to related papers on the constructive content of the theorem.

In [3] Bellin uses proof theoretic techniques to produce a proof of a finitary version of Ramseys’
theorem similar to (1). However, his proof differs from ours in two important respects. Firstly,
his is based on Ramsey’s original proof as opposed to the one analysed here by Erdős and
Rado, and secondly he uses cut-elimination and Herbrand’s theorem as opposed to the dialectica
interpretation.

A formalisation of Erdős and Rado’s proof was recently given by Kreuzer and Kohlenbach in
[14], and a bar-recursive realizer for its functional interpretation was stated in [17]. The main
achievement of these works is to calibrate the proof theoretic strength of RT2

2(c) and establish
its contribution to the complexity of extracted programs in certain cases, whereas our goal is to
produce an intuitive constructive version of the Erdős-Rado proof using the product of selection
functions that can be understood in mathematical terms.

We note that while our formalisation of the Erdős-Rado proof is influenced by theirs in that
we also encode the Erdős-Rado min-monochromatic tree as as a binary Σ0

1 tree, our treatment
differs substantially from [14, 17]. In particular we encode min-monochromatic branches using a
different Σ0

1 tree, and in our program extraction we use new interpretations of WKL and Π0
1-AC

using the product of selection functions, as opposed to the standard bar-recursive interpretations
of Howard and Spector used in [17].

Veldman and Bezem [23] discovered an interesting constructive variant of Ramsey’s theorem.
That formulation and proof have been simplified by Coquand in [5] (see also [4]). Coquand’s
proof makes use a recursion on well-founded trees similar to Spector’s bar recursion. The main
difference being that in our algorithm the well-founded tree is not given explicitly as part of the
problem, as it is in Coquand’s formulation of Ramsey’s theorem.

To summarise, then, in comparison to existing work our analysis of Ramsey’s theorem com-
bines the following key benefits:

1. Our constructive interpretation of the theorem is based on Gödel’s dialectica interpre-
tation. The advantage of this is that our theorem is more ‘computational’ than e.g. that
of Veldman and Bezem [23] in that we explicitly prove the existence of arbitrarily large
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approximations to a monochromatic set. Moreover, as indicated previously, our finitary
Ramsey’s theorem can be related to the finitisations of infinitary theorems in the sense of
Tao [22].

2. Our constructive proof of Ramsey’s theorem is based on the product of selection functions
as opposed to Spector’s bar recursion and can be given a clear game theoretic interpretation
(Section 5).

2 A Formal Proof of Ramsey’s Theorem

Notation. For simplicity we encode a colouring c : [N]2 → B as a map c : N2 → B with the
property that c(i, j) = c(j, i) for all i, j.

We now present a formal proof of Ramsey’s theorem based on that of Erdős and Rado ([6],
Section 10.2). In doing so we show that RT2

2(c) can be formalised in PAω + WKL + Π0
1-AC,

and therefore its functional interpretation can theoretically be witnessed using Spector’s bar
recursion [13, 21], or alternatively (as we demonstrate in Section 3) the product of selection
functions. Of course, actually constructing this witness is non-trivial – the soundness theorem
for the dialectica interpretation gives a syntactic algorithm which would be impractical to carry
out by hand. Therefore, we make use of the soundness theorem as a very rough guide on how to
proceed but use shortcuts whenever possible.

The main idea behind the classical proof is, given a colouring c, to organise the natural
numbers into a tree (described as an ordering ≺ on N) whose branches are min-monochromatic,
in the sense that c(i, j) = c(i, k) for i ≺ j ≺ k, where i ≺ j says that node i precedes j in
the tree. This is the so-called Erdős-Rado (E/R) tree. By König’s lemma the E/R tree has an
infinite min-monochromatic branch a : NN, so by the infinite pigeonhole principle applied to the
colouring ca(i) = c(a(i), a(i + 1)) there exists an infinite subset of the branch that is pairwise
monochromatic.

Our formal proof proceeds, in a similar fashion to [14], as follows. We encode branches of
the E/R tree by an infinite Σ0

1 binary tree T (Definition 2.2). We then reduce T to an infinite
decidable binary tree using Π0

1-AC (Lemma 2.4), which by WKL has an infinite branch. We then
show that an infinite branch of T does indeed encode an infinite branch of the E/R tree (Lemma
2.7). Hence, we are finally able to complete the proof using IPHP (Theorem 2.11). Because we
are only considering here the case of two colours, we do not need the full IPHP but only a very
simple instance of it (case n = 2). Nevertheless, we discuss the whole construction in terms of
the full IPHP so that a generalisation to the case of finitely many colours is more straightforward.
We sketch our formal proof in Figure 1. Here E/R(c) abbreviates the statement that the E/R
tree defined by c has an infinite branch.

IPHP

WKL Π0
1-AC

2.4-2.10
E/R(c)

2.11

RT2
2(c)

Figure 1: Formal proof of Ramsey’s theorem.

It is important to remark why we have chosen this proof over Ramsey’s seemingly simpler
proof in [19]. Ramsey constructs an infinite min-monochromatic branch directly using dependent
choice: First we define a0 = 0, then we use IPHP to produce an infinite set A1 ⊆ N\0 that is
monochromatic under c0(i) = c(0, i) and define a(1) = minA0. Next use IPHP to produce an
infinite set A2 ⊆ A1\a(1) that is monochromatic under ca(1)(i) = c(a(1), i) and define a(2) =
minA1 and so on. It is easy to see that the resulting a is min-monochromatic. However, Ramsey’s
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construction uses dependent choice of type 1 (Simpson shows in [20] that it cannot be formalised
in the subsystem ACA0), therefore its computational interpretation would seemingly involve bar
recursion/product of selection functions of level 1. Our interpretation of the Erdős-Rado proof,
on the other hand, makes use of the product of selection functions of lowest type only, meaning
that our construction is computationally simpler.

Definition 2.1 (Erdős/Rado tree). Given a colouring c : N2 → B, define a partial order ≺ on N
recursively as follows:

1. 0 ≺ 1

2. Given that ≺ is already defined on the initial segment of the natural numbers [j], for j < i
define

j ≺ i iff c(k, i) = c(k, j), for all k ≺ j

It is easy to show that ≺ defines a tree on N, the so-called Erdős/Rado tree, and that its
branches are min-monochromatic i.e. c(k, i) = c(k, j) for k ≺ i ≺ j. Moreover, the tree is binary
branching because i and j are successors of k if and only if c(k, i) 6= c(k, j). For proofs of these
facts see [14, Section 4]. We consider the following Σ0

1 tree.

Definition 2.2 (Binary Erdős/Rado tree). Define the Σ0
1-predicate T on B∗ by

T (s) := ∃k(∃k′∈ [|s|, k]∀i < |s|(si = 0 ↔ i ≺ k′)︸ ︷︷ ︸
T ′(s,k)

).

A 0-1 sequence s belongs to T if it is the characteristic function of a finite branch of the
Erdős/Rado tree. We use a k and a k′ in order to make T (s) a Σ0

1-predicate monotone on
unbounded quantifier k. This will simplify the construction.

Lemma 2.3. The following are simple properties of T

(i) T as defined above is an infinite tree.

(ii) The branches of T are characteristic functions of branches of the E/R tree.

(iii) T satisfies the following monotonicity conditions2:

(M1) T ′(s ∗ t, k)→ T ′(s, k) and (M2) T ′(s, k)→ T ′(s, k + l).

Proof. (i) Clearly T is prefix closed. Moreover, for all n, T (s) has a branch s of length n given by
si = 0 iff i ≺ n, for i < n. (ii) T (s) implies that the set defined by s is an initial segment of the
branch of the predecessors of k′, denoted pd(k′), of the E/R tree. Therefore is also a branch of
the E/R tree. (iii) (M1) is obvious, and (M2) follows because we only ask for a bound on k′.

The first step in our proof is to prove the existence of a function β which will allow us to turn
the Σ0

1-tree T (s) into a decidable tree.

Lemma 2.4 (Monotone Skolem function). There exists a function β such that

∀n∀s(|s| = n ∧ ∃kT ′(s, k)→ T ′(s, βn)). (2)

Proof. Classically we have that

∀n∀s(|s| = n→ ∃k′(∃kT ′(s, k)→ T ′(s, k′))).

By bounded collection and monotonicity of T ′ we have

∀n∃k′∀s(|s| = n ∧ (∃kT ′(s, k)→ T ′(s, k′))).

Finally, by countable choice for Π0
1-formulas we obtain the function β.

2It will become clear in Section 4 why we require our tree to have these properties.
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The Skolem function β allows us to turn the Σ0
1-predicate T (s) into a decidable predicate:

Corollary 2.5. Given a function β satisfying (2) we have that T (s) is equivalent to

∃k∈ [|s|, β(|s|)]∀i < |s|(si = 0 ↔ i ≺ k)︸ ︷︷ ︸
Tβ(s)

.

Once we have a decidable infinite finitely branching tree T β(s) we can apply weak König’s
lemma to obtain an infinite path in the tree.

Lemma 2.6. There exists an infinite sequence α such that

∀n∃k∈ [n, βn]∀i < n(α(i) = 0 ↔ i ≺ k)︸ ︷︷ ︸
Tβ([α](n))

. (3)

Proof. By weak König’s lemma.

However, it remains to show that an infinite branch of T encodes an infinite branch of the
Erdős/Rado tree.

Lemma 2.7. The sequence α has infinitely many zeros, i.e. it is the characteristic function of
an infinite set. More specifically, we can construct a function a : N → N that returns the first
k ≥ n with α(k) = 0.

Proof. Define a(n) as

a(n) =

{
0 if n = 0

k for least k ∈ [n, β(βn+ 1)] such that α(k) = 0.

We show that a is well-defined, so that in fact α(a(n)) = 0 for all n. Because the image of a
is unbounded the result follows. We must have that α(0) = 0 by definition of ≺. Now given
n > 0, let i < n be the largest such that α(i) = 0. Consider k ∈ [n, βn] which by (3) satisfies
∀i < n(α(i) = 0 ↔ i ≺ k); and hence i ≺ k. Now, let n be βn + 1 in (3) so that we have
a k′ ∈ [βn + 1, β(βn + 1)] satisfying ∀i < n(α(i) = 0 ↔ i ≺ k′); and hence i ≺ k′ as well.
Finally, let n be β(βn + 1) + 1 in (3) so that we have a k′′ ∈ [β(βn + 1) + 1, β(β(βn + 1) + 1)]
satisfying ∀i < n(α(i) = 0 ↔ i ≺ k′′); so that also i ≺ k′′. Since we have i ≺ k and i ≺ k′ and
i ≺ k′′, it follows that either k ≺ k′ or k ≺ k′′ or k′ ≺ k′′, since the Erdős/Rado tree is binary
branching. Hence, either α(k) = 0 or α(k′) = 0, and either way there is some l ∈ [n, β(βn + 1)]
with α(l) = 0.

Remark 2.8. Note that in verifying that α(a(n)) = 0 we have only used (3) up to the point
max{n, βn+1, β(βn+1)+1}. We use this fact later to show that a sufficiently large approximation
of α is sufficient for an approximation of a.

Remark 2.9. For the n colour case the Erdös/Rado tree is still finitely branching but not binary
branching as it is for case of two colours n = 2. This in particular means that generalising the
proof of Lemma 2.7 for arbitrarily many colours is non-trivial (although still routine), and the
construction of the function a and the bound in Remark 2.8 are more complex (involving further
iterations of β). Note, however, that the tree T (s) would still be binary branching, even in the case
of n colours, as T (s) means that s is the “characteristic function” of a branch in the Erdös/Rado
tree. In particular, only the weak form of König’s lemma is required in the general case as well.

Corollary 2.10. There exists an infinite set that is min-monochromatic under the colouring
c : N2 → B.

Proof. Clearly the set {an : n ∈ N} is infinite. Moreover for ak < ai < aj it follows from (3) for
n = aj + 1 that ak ≺ ai ≺ aj, and therefore c(ak, ai) = c(ak, aj).
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All that remains is to apply the infinite pigeonhole principle to the min-monochromatic branch
given by a.

Theorem 2.11 (Ramsey’s theorem). For every colouring c : N2 → B

∃xB∃FN→N∀k(Fk ≥ k ∧ ∀i, j ≤ k(Fi < Fj → c(Fi, F j) = x)).

Proof. Let a be as in the previous lemma. Clearly an ≥ n, so the image of a is an infinite set.
Moreover,

c(a(k), a(i)) = c(a(k), a(j)), (4)

whenever a(k) < a(i) and a(k) < a(j), by (3) and definition of a. Finally, define a couloring
c′ : N→ B as c′(n) = c(a(n), a(a(n) + 1)). By the infinite pigeon-hole principle we have a p and
an x such that p(n) ≥ n and

x = c′(pi) = c(a(pi), a(a(pi) + 1))
(4)
= c(a(pi), a(pj)),

for a(pi) < a(pj). Hence, F (i) = a(pi) does the job.

3 The Product of Selection Functions

It is well known that just as Peano arithmetic has a dialectica interpretation in the primitive
recursive functionals of finite type T, classical analysis (i.e. PAω + AC0) has a dialectica inter-
pretation in the bar recursive functionals T + BR, where BR is the bar recursor introduced by
Spector in his fundamental paper [21].

Spector’s bar recursion is rather abstruse, and the operational behaviour of programs that
make use of this kind of recursion tends to be quite difficult to understand. This was not originally
an issue, as Spector’s aim was simply to obtain a relative consistency proof for analysis. However,
when using the dialectica interpretation to extract programs from proofs in analysis, it is sensible
to ask whether there is a more intuitive alternative to bar recursion that facilitates a better
understanding of these programs.

In [7], the first author and Escardó propose the product of selection functions as a (com-
putationally equivalent) alternative to bar recursion. In contrast to bar recursion, the product
of selection functions is a versatile construction that seems to appear naturally in a variety of
different contexts in mathematics and computer science, such as fixed point theory, algorithms
and game theory. As such, extracted programs that make use of the product tend to be more
illuminating.

In this section we briefly outline the main results that will be used in Section 4, and provide
some motivation as to why we prefer the product over bar recursion. The reader is encouraged to
consult the survey paper [9] and a recent paper on the extraction of programs from proofs using
selection functions [18] for further details and discussion.

We call selection function any element of type JRX := (X → R) → X. Given a selection

function ε : (X → R)→ X we denote by ε : (X → R)→ R the functional ε(p)
R
= p(εp).

Definition 3.1 (Binary product of selection functions [8]). Given a selection function ε : JRX
and family of selection functions δx : JRY and a predicate q : X × Y → R, let

B[xX ]
Y
:= δ(x, λy.q(x, y))

a
X
:= ε(λx.q(x,B[x])).

The binary product ε⊗ δ of the selection functions ε and δ is another selection function, of type
JR(X × Y ), defined by

(ε⊗ δ)(q) X×Y:= 〈a,B[a]〉.
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As described in [8], we can iterate the binary product of selection functions an unbounded
number of times, where the length of the iteration is dependent on the output of the product in
the following sense.

Definition 3.2 (Iterated product of selection functions [8]). Suppose we are given a family of
selection functions (εs : JRX), where s : X∗. The explicitly controlled unbounded product of the
selection functions εs is defined by the recursion schema

EPSωs (ε)(q)
XN

=

{
0 if ω(ŝ) < |s|

(εs ⊗ λx.EPSωs∗x(ε))(q) otherwise
(5)

where s : X∗, q : XN → R and ω : XN → N.

When ω is a constant function, say ωα = n, this corresponds to a finite iteration of the binary
product. The functional ω acts as a control, terminating the recursion once it has produced a
sequence s satisfying ω(ŝ) < |s|. By simply unwinding the definition of the binary product in (5)
we obtain an equivalent equation

EPSωs (ε)(q)
XN

=

{
0 if ω(ŝ) < |s|

as ∗ EPSωs∗as(ε)(qas) otherwise
(6)

where as = εs(λx.EPS
ω
s∗x(ε)(qx)), with qx(α) = q(x ∗ α) and δ(p)

R
= p(δp).

For fixed ω, ε and q we should think of EPSωs (ε)(q) as computing an infinite extension to any
given finite sequence s. Hence, we are interested in the sequence s∗EPSωs (ε)(q). The fundamental
property of EPS is that the infinite extension of an initial segment [α](n) of a previous infinite
extension α is identical to the original infinite extension. Formally:

Lemma 3.3 (Main lemma on EPS). If α = EPSωs (ε)(q) then, for all n,

α = [α](n) ∗ EPSωs∗[α](n)(ε)(q[α](n)). (7)

Proof. Induction on n. See [9] for details.

This lemma is the main building block behind the proof of the following fundamental theorem
about EPS.

Theorem 3.4 (Main theorem on EPS). Let q : XN → R and ω : XN → N and εs : JRX be given.
Define

α
XN

= EPSω〈 〉(ε)(q)

ps(x)
R
= EPSωs∗x(ε)(qs∗x).

For n ≤ ω(α) we have

α(n)
X
= ε[α](n)(p[α](n))

qα
R
= ε[α](n)(p[α](n)).

Proof. Assume n ≤ ω(α). We argue that (∗) n ≤ ω([α](n) ∗ 0). Otherwise, assuming n >
ω([α](n) ∗ 0) we would have, by Lemma 3.3, that α = [α](n) ∗ 0. And hence, n > ω([α](n) ∗ 0) =
ω(α) ≥ n, which is a contradiction. Hence, we have that

α(n)
L3.3
= EPSω[α](n)(ε)(q[α](n))(0)

(∗)
= ε[α](n)(λx.EPS

ω
[α](n)∗x(ε)(q[α](n)∗x))

= ε[α](n)(p[α](n)).
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For the second identity, we have

qα
L3.3
= q[α](n+1)(EPS

ω
[α〈 〉](n+1)(ε)(q[α](n+1)))

= p[α](n)(α(n))

= ε[α](n)(p[α](n)),

where the last equality uses that α(n) = ε[α](n)(p[α](n)) is already shown.

The significance of Theorem 3.4 is that it shows how the product of selection functions com-
putes a sequence α that represents, in some sense, a sequential equilibrium between the selection
functions up to the point ωα. This kind of equilibrium appears in a variety of different contexts,
most notably the following.

3.1 Optimal strategies in sequential games

As discussed in [9], the parameters ε, q and ω of EPS naturally define a sequential game

GX,R = (ε, q, ω)

of type (X,R). We imagine X as a set of possible moves at each round, and R as a set of possible
outcomes. A finite sequence s : X∗ can be thought of as a position in the game determined by
the first |s| moves, while an infinite sequence α : XN can be thought of as a play of the game. We
then make the following associations:

• εs : JRX determines an optimal move at position s given that the outcome of each possible
move X → R is known.

• q : XN → R determines the outcome of each play α.

• ω : XN → N determines the relevant part of a play. A position s is relevant if ωŝ ≥ |s|.

We refer to q and ω as the outcome function and control function, respectively. In general
these games can be thought of as unbounded games in which we only care about a finite initial
segment of any play, as determined by ω. In the context of game theory Theorem 3.4 can be
rephrased as the following.

Theorem 3.5. The sequence α = EPSω〈〉(ε)(q) is an optimal play in the game GX,R = (ε, q, ω).

We do not go into details on exactly what constitutes an optimal play, or how Theorem 3.5
is proved (for this see [7]) but the main idea is not difficult to see. We imagine the function ps
defined in Theorem 3.4 as giving outcome of playing x at position s, under the assumption that
all subsequent moves are played optimally, and thus εs(ps) is the best move at position s.

The product of selection functions carries out a backtracking algorithm and eventually com-
putes a sequence α such that α(n) = ε[α](n)(p[α](n)) for all n ≤ ωα. In other words α(0) is the
best move at position 〈〉, α(1) the best move at position 〈α(0)〉 and more generally α(n) the best
move at position [α](n) for as long as [α](n) is relevant. In this sense α forms an optimal play
of G. We remark that the strategy profile arising from this notion of optimal play coincides with
the Nash equilibrium of a sequential game (see [10]).

3.2 The dialectica interpretation of the axiom of choice

Sequential games provide us with perhaps the most illuminating instance of the equilibrium
computed by the product of selection functions. Remarkably, another instance is the dialectica
interpretation of the axiom of choice.
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The functional interpretation of Π0
1-AC is equivalent to

∀ε, q, ω(∀n, pAn(εnp, p(εnp))→ ∃α∀n ≤ ωαAn(αn, qα)).

It challenges us, given a collection of ‘pointwise’ strategies εn that witness the no-counterexample
interpretation of the An, to combine them into a global strategy α that witnesses the n.c.i. of
∀nAn. It is clear by Theorem 3.4 that the product of selection functions does the job.

Theorem 3.6. The functional λε, q, ω.EPSω〈〉(ε)(q) realises the dialectica interpretation of Π0
1-AC.

Again, we do not go into detail, this time we refer the reader to [7, 18]. It can be shown
more generally that EPS directly witnesses the dialectica interpretation of dependent choice for
arbitrary formulas, and that a finite form of EPS with ω constant directly interprets finite choice
or bounded collection. Moreover, EPS is primitive recursively equivalent to Spector’s bar recursion
[8], and its finite form is equivalent to primitive recursion over a weak base theory [11].

The key point we emphasise is that, as a computational analogue of choice, the product
of selection functions is an extremely useful recursion schema to have at our disposal when it
comes to extracting programs from proofs in both arithmetic and analysis. The fact that it
also computes optimal strategies in sequential games means that extracted programs can be
given an intuitive game-theoretic semantics, in the sense that we can often informally identify
the “classical” dialectica interpretation AND of a theorem A with a partially defined sequential
game:

AND ∼ GA,
where a realizer for AND can given in terms of optimal strategies in GA. This gives the product of
selection functions a clear advantage over bar recursion when interpreting theorems in analysis.

We now extract a program from the formal proof of Ramsey’s theorem described in Section
2 using the product of selection functions EPS. We apply the product directly, appealing only to
the main Theorem 3.4. The other results in this section were mentioned simply to provide some
motivation as to why the product appears naturally in proof theory and why it is preferred to
the more traditional modes of recursion.

4 A Constructive Proof of Ramsey’s Theorem

Before launching into the full interpretation of the classical proof, it is instructive to look at the
overall structure of our extracted program. Let us first look at the computational interpretation
of the final part of the classical proof – Theorem 2.11. Here we show that RT2

2(c) follows directly
from IPHP given that we have already constructed a min-monochromatic set. Suppose we have
interpreted the lemma IPHP, in other words: for any ε : B × NN → N and c we can construct x
and p satisfying

∀n ≤ εxp(pn ≥ n ∧ c(pn) = x). (8)

Assuming that we have already (ineffectively) produced the min-monochromatic set given by
a, if ca is defined as in Theorem 2.11 and we set εaxp = ηx(a ◦ p) (where we recall that η is a
counterexample function for the finitary Ramsey’s theorem as in (1)), then by (8) there exist xa

and pa satisfying
∀n ≤ ηxa(a ◦ pa)(pan ≥ n ∧ ca(pan) = xa).

It is easy to see that our main theorem follows since setting F = a ◦ pa, for k ≤ ηxF we have

Fk = a(pak) ≥ pak ≥ k

and, given Fi < Fj
c(Fi, Fj) = c(a(pai), a(paj)) = ca(pai) = xa.

So what about a? The key observation is that we do not really need to have constructed the
whole of a for the above argument to work, only a finite approximation of a is necessary. By
inspection, provided that a is min-monochromatic up to

10



ϕa = maxi≤ηxa (a◦pa) p
a(i)

the claim above still holds. Therefore, if in addition we have interpreted the lemma E/R(c),
running it on the counterexample function ϕ gives us a sufficiently large approximation of the
min-monochromatic branch needed for an approximation of Ramsey’s theorem on η. Denoting the
quantifier-free matrix of the dialectica interpretation of A ≡ ∃x∀yAD(x; y) as |A|xy , we illustrate
this construction, very informally, with the inference

λa . |IPHP[a]|p
a,xa

εa |E/R(c)|aϕ
|RT2

2(c)|a◦pa,xaη

making clear that the realiser for IPHP is computed relative to the parameter a. In practise this
means that we run our program for E/R(c) once, calling on the interpretation of IPHP[a] each
time we wish to check that a candidate a is suitable.

An entirely analogous procedure is involved, in turn, for interpreting E/R(c) itself. E/R(c)
follows from WKL assuming the existence of a monotone Skolem function β making the tree
T decidable. Therefore we need to calibrate exactly how much of β is required in order to
successfully run the computational interpretation of WKL. As we will see, this part is rather
more involved. A rough map of our whole construction is given in Figure 2.

L. 4.11

λa . |IPHP[a]|p
a,xa

εa

Th. 4.4

λβ . |WKL[β]|αβωβ

L. 4.7

|Π0
1-AC|βq̃,ω̃

Th. 4.8, L. 4.9
|E/R(c)|aα,βϕ

Th. 4.12
|RT2

2(c)|a◦p
a,xa

η

Figure 2: Interpreted proof of Ramsey’s theorem

By comparison with our proof tree in Section 2 it is clear – as expected – that the structure
of the interpreted proof reflects that of the classical proof.

As mentioned in Remark 2.9, generalising our construction to the n-colour case becomes non-
trivial in the construction of the min-monochromatic branch, as the E/R tree is no longer binary
branching for n > 2 and therefore calibrating how much of β we require is a little more intricate.
Also, in the n-colour case full use of IPHP would be made. That is explained in Lemma 4.11
below.

We now proceed with our formal program extraction. We interpret each of the main ineffective
lemmas IPHP, WKL and Π0

1-AC in turn using the product of selection functions, and combine
these realisers as described above in order to produce an approximation of Ramsey’s theorem.
In Section 5 we discuss the aforementioned link with sequential games, and give our program a
game-theoretic reading.

4.1 Interpreting WKL

The first ineffective step in the proof we examine is the use of weak König’s lemma to produce
the infinite sequence α given a Skolem function β, as in Lemma 2.6. We will show how to witness
the no-counterexample interpretation of this lemma. As before, let T be the Σ0

1-predicate on B∗
defined as

T (s) := ∃k(∃k′∈ [|s|, k]∀i < |s|(si = 0 ↔ i ≺ k′)︸ ︷︷ ︸
T ′(s,k)

).

Let us assume we have an ideal Skolem function β satisfying

∀n, k∀s(|s| = n ∧ T ′(s, k)→ T ′(s, βn)). (9)

11



Because the existence of β is ineffective, we will keep track of exactly when we call on β by

highlighting it with a box . This means that we know how much of β is needed to construct an
approximation of α, so that later we can in turn produce an approximation to β sufficient for the
construction of α.

Recall that we use the abbreviation T β(s) = T ′(s, β(|s|)). The n.c.i. of Lemma 2.6 is as
follows

∀ωBN→N∃αT β([α](ωα)). (10)

Therefore, let us show how to witness α as a function of β and ω.

Lemma 4.1. Let β be a function satisfying (9). The tree T β has branches of arbitrary length,
i.e. for all n there exists s such that |s| = n and

∃k′∈ [n, βn]∀i < |s|(si = 0 ↔ i ≺ k′)︸ ︷︷ ︸
Tβ(s)

,

Proof. Given n define s as the sequence of length n such that, for i < n, si = 0 if and only if

i ≺ n. We then have T ′(s, n). By (9) with k = n , we can conclude T ′(s, βn).

Lemma 4.2. Let Depthn(T ) ≡ ∃s(|s| = n ∧ T (s)). Let also β be a function satisfying (9), and
ε : JBB be defined as

εsp
B
=

{
0 if Depthp(0)+1(T βs )→ Depthp(0)(T

β
s∗0)

1 otherwise.

Then
∀s, p(Depthp(εsp)+1(T βs )︸ ︷︷ ︸

(i)

→ Depthp(εsp)(T
β
s∗εsp)). (11)

Proof. Fix s and p and assume (i). If

Depthp(0)+1(T βs )→ Depthp(0)(T
β
s∗0)

holds, then εsp = 0 and we are done. If, on the other hand,

Depthp(0)+1(T βs )︸ ︷︷ ︸
(ii)

∧¬Depthp(0)(T
β
s∗0)︸ ︷︷ ︸

(iii)

holds, then εsp = 1. Hence, the assumption (i) implies (iv) Depthp(1)+1(T βs ). Now we consider
two cases:

Case 1: p(0) ≥ p(1). By (ii) and (iii) we have Depthp(0)(T
β
s∗1). Therefore by (M1) we have

∃tBp(1)T ′(s∗1∗t, β(|s|+p(0)+1)), and applying (9) for n = |s|+ p(1) + 1 and k = β(|s|+ p(0) + 1)

we obtain
∃tB

p(1)

T ′(s ∗ 1 ∗ t, β(|s|+ p(1) + 1)) ≡ Depthp(1)(T
β
s∗1).

Case 2: p(0) < p(1). Applying (9) on n = |s|+ p(0) + 1 and k = β(|s|+ p(1) + 1) and (iii) we

obtain
∀tB

p(0)

¬T ′(s ∗ 0 ∗ t, β(|s|+ p(1) + 1)).

By (M1) we have

∀rB
p(1)

¬T ′(s ∗ 0 ∗ r, β(|s|+ p(1) + 1)) ≡ ¬Depthp(1)(T
β
s∗0).

But then by (iv) we obtain Depthp(1)(T
β
s∗1) and we are done.
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Remark 4.3. By inspecting the above proof we see that to verify that the selection functions ε
satisfy (11) for given s, p it is sufficient that the Skolem function β satisfies (9) only up to

n = |s|+ max{p(0), p(1)}+ 1 and k = maxi≤nβ(i).

In order to construct a witness for (10) we shall first build a sequence α satisfying

∀k < ωα(Depthωα−k(T β[α](k))→ Depthωα−k−1(T β[α](k+1))). (12)

We will then obtain (10) by a simple induction on k.

Theorem 4.4. Let β be a function satisfying (9), and ω : BN → N be given. Define qωα as
ωα − k − 1 where k < ωα is the least refuting (12), and 0 if no such k exists. Also, let ε be as
defined in Lemma 4.2. The sequence

α = EPSω〈 〉(ε)(q
ω)

satisfies T β([α](ωα)).

Proof. By Lemma 4.2 we have

∀s, p(Depthp(εsp)+1(T βs )→ Depthp(εsp)(T
β
s∗εsp)). (13)

By Theorem 3.4 we have that α (as above) and p[α](n) (as defined in Theorem 3.4) are such that,
for n ≤ ωα,

αn = ε[α](n)p[α](n)

qωα = p[α](n)(ε[α](n)p[α](n)).

Hence, taking s = [α](ωα− qωα− 1) and p = ps in (13), we obtain

Depthqωα+1(T β[α](ωα−qωα−1))→ Depthqωα(T β[α](ωα−qωα)). (14)

Therefore, by the definition of qω we must have that (12) holds. If not, then there is some least
k < ωα refuting (12), but then (14) is equivalent to

Depthωα−k(T β[α](k))→ Depthωα−k−1(T β[α](k+1)).

Now, by Lemma 4.1 we have Depthωα(T β) (i.e. by taking n = ωα and k = ωα in (13). Hence,

by induction on k, from k = 0 to k = ωα− 1, we obtain Depth0(T β[α](ωα)), i.e. T β([α](ωα)).

Theorem 4.4 defines a construction β, ω 7→ αβ,ω that takes a Skolem function β satisfying (9)
and a counterexample function ω and produces an “approximately infinite” branch α of T β . But
the proof above only requires the selection functions ε to satisfy (13) for the specific s, p outlined,
which in turn (Remark 4.3) only require β to satisfy (9) for a finite number of inputs. Thus we
obtain:

Corollary 4.5. Given β and ω, let α and ps be constructed as in Theorem 4.4 and define

Nβ,ω = max{ωα, |ωα− qωα− 1|+ max{ps(0), ps(1)}+ 1}

Kβ,ω = max{ωα,maxi≤Nβ,ωβ(i)}.

If β is an approximate Skolem function up to n = Nβ,ω and k = Kβ,ω then α (from Theorem
4.4) satisfies T β([α](ωα)).
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4.2 Interpreting Π0
1-countable choice

We have described a construction β 7→ α which for each oracle for the Skolem function β computes
an approximation to the infinite binary branch α. In Corollary 4.5 we argued that one only needs
an approximation to β in order for our construction to work. We now show how to compute such
an approximation. We first need the following lemma:

Lemma 4.6. Let δn : JNN be defined as

δnp = pi(0) (15)

where i is the least ≤ 2n such that, for all sB
n

, T ′(s, pi+1(0))→ T ′(s, pi(0)). We have

∀sB
n

(T ′(s, p(δnp))→ T ′(s, δnp)) (16)

for arbitrary n, p.

Proof. Note that (16) holds by definition once we show that such i ≤ 2n must exist. Assume, for
the sake of a contradiction, that

(I) for all i ≤ 2n there exists an sB
n

such that T ′(s, pi+1(0)) and ¬T ′(s, pi(0)).

By monotonicity of T ′ on the second argument, (I) clearly implies that

(II) pi(0) < p(pi(0)), for all 0 ≤ i ≤ 2n.

Since, in (I), we have 2n + 1 possible values for i but only 2n possible values for s, there must be
an s and distinct i and j, say i < i + 1 ≤ j, such that T ′(s, pi+1(0)) and ¬T ′(s, pj(0)). By (II),
however, that is a contradiction.

We now show how to construct an arbitrary approximation to the Skolem function β. The
next result can be viewed as the computational analogue of Lemma 2.4.

Lemma 4.7. Given arbitrary counterexample functionals ω̃, q̃ : NN → N, define

β = EPSω̃〈〉(δ)(q̃)

where δ is defined as in Lemma 4.6. Then β satisfies

∀n ≤ ω̃β ∀sB
n

(∃k ≤ q̃β T ′(s, k)→ T ′(s, βn)). (17)

Proof. By the main theorem on EPS and (16) we obtain

∀n ≤ ω̃β ∀sB
n

(T ′(s, q̃β)→ T ′(s, βn)).

By (M2) we have ∀k ≤ q̃β(T ′(s, k)→ T ′(s, q̃β)), therefore (17) follows.

Now that we can construct approximations to β we are able to construct an approximation
to an infinite branch of the Σ0

1 tree T .

Theorem 4.8. For all ω : BN × NN → N there exists α and β such that

∀n≤ωαβ ∃k∈ [n, βn]∀i < n(α(i) = 0 ↔ i ≺ k)︸ ︷︷ ︸
Tβ([α](n))

. (18)
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Proof. Let β, ω 7→ αβ,ω denote the construction defined in Theorem 4.4. Define

ω̃β = Nβ,ω and q̃β = Kβ,ω

where Nβ,ω and Kβ,ω are defined as in Corollary 4.5. Define β = EPSω̃〈〉(δ)(q̃) and α = αβ,ωβ .

We claim that these satisfy (18). By (17) and Corollary 4.5 we have T β([α](ωαβ)). Now suppose
that n ≤ ωαβ. Then by (17)

T ′([α](n), β(ωαβ))→ T ′([α](n), βn) ≡ T β([α](n)),

and since by (M1) T β([α](ωαβ))→ T ′([α](n), β(ωαβ)) we are done.

We are now in a position where we can construct an arbitrarily long min-monochromatic
sequence a, even if the length of the sequence is determined only after we have built a, as given
by ψa, as long as we are allowed to use ψ in the construction of a.

Lemma 4.9. For any ψ there exists a function a : N→ N such that for all n ≤ ψa

(n ≤ an) ∧ ∀i, j, k<n(ak < ai ∧ ak < aj → c(ak, ai) = c(ak, aj)). (19)

Proof. First, define a parametrised aα,β as in Lemma 2.7:

aα,β0 := 0

aα,β(n+ 1) := µk ∈ [n, β(βn+ 1)] (αk = 0) .
(20)

Then, take (cf. Remark 2.8)

ωαβ = maxi≤ψ(aα,β)(max{i, βi+ 1, β(βi+ 1) + 1})
and let α and β be as the Theorem 4.8. It is easy, following the same proof as in Lemma 2.7, to
check that a = aα,β satisfies (19).

Remark 4.10. For the n-colour case, the construction of a is more complicated (cf. Remark
2.9) and ω will need to demand a larger approximation to β.

4.3 Final arguments and IPHP

Finally, the last non-constructive step in the proof is the use of the infinite pigeon-hole principle.
Note that we in fact only make use of a particular instance of IPHP, namely n = 2. Nevertheless,
we refer to the general IPHP so it is easier to see how our construction can be generalised for
arbitrarily many colours.

Lemma 4.11. We have

∀εB×N
N→N∃xB, pN

N
∀i ≤ εxp(pi ≥ i ∧ c(pi) = x).

Proof. Given εx define

ε̃xp = µi ≤ εxp¬(pi ≥ i ∧ c(pi) = x).

Then let (a0, a1) = (ε̃0 ⊗ ε̃1)(max) and N = max{a0, a1}. By the main theorem on the product
of selection functions we have p0 and p1 such that

a0 = ε̃0p0 a1 = ε̃1p1 N = p0(a0) = p1(a1).

Let x = c(N) and p = px. Clearly, p(ε̃xpx) = pax = pxax = N ≥ ax. Moreover, c(p(ε̃xpx)) =
c(pax) = c(N) = x. Hence, by the definition of ε̃x we must have

∀i ≤ εxp(pi ≥ i ∧ c(pi) = x).

Note that essentially the same proof works for the n-colour case, where we have n selection
functions ε̃0, . . . , ε̃n−1 accounting for each colour, and we take the finite product (ε̃0 ⊗ . . . ⊗
ε̃n−1)(max).
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The theorem then follows by combining the construction of the min-monochromatic sequence
with an application of IPHP.

Theorem 4.12. Let a colouring c : N2 → B be fixed. For any pair of selection functions ηx : JNN
there exists F : N→ N and x : B (explicitly given in Section 4.4) such that

∀k ≤ ηxF (k ≤ Fk ∧ ∀i, j ≤ k(Fi < Fj → c(Fi, Fj) = x)).

Proof. Assume c : [N]2 → B and η0 : JNN and η1 : JNN are given. For any function a let ca(i) =
c(a(i), a(i + 1)). Let εaxp = ηx(a ◦ p), with a : N → N as a parameter. By Lemma 4.11 we have
that there exists pa and xa such that

∀i<ηxa(a ◦ pa)(pa(i) ≥ i ∧ ca(pa(i)) = xa). (21)

Let ψa = maxi≤pa(ηxa (a◦pa)) p
a(i). By Lemma 4.9 there exists an a : N → N such that for all

n ≤ pa(ηxa(a ◦ pa)) we have an ≥ n and

∀i, j, k<n(ak < ai ∧ ak < aj → c(ak, ai) = c(ak, aj)). (22)

Take F = a ◦ pa and x = xa. Therefore, for k ≤ ηxF = ηx(a ◦ pa) we have

• pak ≥ k by (21) which, by the above implies that

Fk = a(pak) ≥ pak ≥ k.

• and, for i, j ≤ k, given that Fi < Fj, we have

x
(21)
= ca(pa(i)) = c(a(pa(i)), a(pa(i+ 1))).

Hence

c(a(pai)︸ ︷︷ ︸
Fi

, a(paj)︸ ︷︷ ︸
Fj

)
(22)
= c(a(pai), a(pa(i) + 1))

(21)
= x.

4.4 Summarising the construction of x and F

From the proof of Theorem 4.12 we can read off the construction of F and x which we summarise
here. Recall that the input to our problem is a colouring c : N2 → B and a pair of selection
functions ηx : JNN. Also, recall the abbreviations

T ′(s, k) ≡ ∃k′∈ [|s|, k]∀i < |s|(si = 0 ↔ i ≺ k′))

T β(s) ≡ T ′(s, β(|s|))

Depthn(T βs ) ≡ ∃t(|t| = n ∧ T β(s ∗ t)).

(A) Construction of x and F given a : NN. First, assume a function a : NN given and let
ca(i) = c(a(i), a(i+ 1)) and εaxp = ηx(a ◦ p). Define

ε̃xp = µi ≤ εaxp¬(pi ≥ i ∧ ca(pi) = x).

Take (k0, k1) = (ε̃0 ⊗ ε̃1)(max) and xa = c(max{k0, k1}) and

pa(k) =

{
ε̃1(λk′.max{k, k′}) if xa = 0

max{k0, k} if xa = 1.
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and F a = a ◦ pa.

(B) Construction of α given β : NN and ω : BN × NN → N. Then, we construct a sequence
αβ,ω : BN parametrised by β : NN and ω : BN × NN → N as follows. Let

qβ,ωα = ωαβ − k − 1,

where k < ωαβ is the least refuting

∀k < ωαβ(Depthωαβ−k(T β[α](k))→ Depthωαβ−k−1(T β[α](k+1))),

and

εβs p
B
=

{
0 if Depthp(0)+1(T βs )→ Depthp(0)(T

β
s∗0)

1 otherwise.

Define

αβ,ω = EPSλα.ωαβ〈 〉 (εβ)(qβ,ω).

(C) Construction of β given ω : BN×NN → N using (B). Using αβ,ω we construct a sequence
βω : NN parametrised by ω : BN × NN → N only. Let δn : JNN be

δnp = pi(0)

where i is the least ≤ 2n such that, for all sB
n

, T ′(s, pi+1(0))→ T ′(s, pi(0)), and

ω̃β = max{ωαβ,ωβ, |ωαβ,ωβ − qβ,ωαβ,ω − 1|+ max{p(0), p(1)}+ 1}

q̃β = max{ωαβ,ωβ,maxi≤ω̃ββ(i)},

where

p(x) = EPSλα.ωαβs∗x (εβ)(qβ,ωs∗x)

s = [αβ,ω](ωαβ,ωβ − qβ,ωαβ,ω − 1).

Define

βω = EPSω̃〈〉(δ)(q̃).

(D) Construction of ω using (A). We now construct the missing ω as

ωαβ = maxi≤ψ(aα,β)(max{i, βi+ 1, β(βi+ 1) + 1})

where ψa = maxi≤pa(ηxa (a◦pa)) p
a(i), with pa and xa as defined in (A), and

aα,βn =

{
0 if n = 0

µk ∈ [n− 1, β(β(n− 1) + 1)] (αk = 0) if n > 0.

(E) Construction of x and F using (A) – (D). Finally, take β = βω and α = αβ,ω and
a = aα,β , so that x and F are defined as x = xa and F = a ◦ pa.

5 A Game-Theoretic Reading of the Proof

Following the discussion in Section 3, we know that each instance of EPS used in our finitisation of
Ramsey’s theorem corresponds to the computation of an optimal strategy in a partially defined3

game. We now discuss the specific games corresponding to the main instances of EPS used in our
extracted program, and show how our constructive proof Ramsey’s theorem can be understood
in game-theoretic terms.

3We call a game G partially defined when not all three parameters ε, q and ω are given, and write the open
parameters in square brackets e.g. G[ε].
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Π0
1 countable choice: GN,N

Π0
1-AC

[q̃, ω̃] = (δ, q̃, ω̃)

The game central to our interpretation is that corresponding to our use of countable choice. The
selection functions δn defined in Lemma 4.6 implement a ‘no new branches’ strategy, picking a
number i = δnp satisfying

∀sB
n

(T ′(s, p(i))→ T ′(s, i))

i.e. there are no branches s of T which have a witness bounded by the outcome p(i) which is not
already bounded by the move i.

For any outcome function q̃ and control function ω̃, an optimal strategy in this case is a
sequence β satisfying, for all n ≤ ω̃β,

∀sB
n

(T ′(s, q̃β)→ T ′(s, βn)).

This means that every move βn in the play β (for n ≤ ω̃β) already bounds a witness for any
branch s of length n which has a witness bounded by the final outcome q̃β. This optimal strategy
is precisely the approximation to a monotone Skolem function we require.

Weak König’s lemma: GB,NWKL[ω] = (ε, qω, ω)

The interpretation of WKL applied to the decidable tree T β is interpreted by a binary game
(where the set of possible moves at each round is B). The strategy εs at position s defined by the
selection functions given in Lemma 4.2 is to pick a boolean b such that if s extends to a branch
in T of length |s|+ p(b) + 1 then s ∗ b also extends to a branch of length |s|+ p(b) + 1.

Given ω, by choosing qω suitably as in Theorem 4.4, the optimal strategy of GWKL determined
by these selection functions is a sequence α such that for all k ≤ ωα, whenever [α](k) extends to
a branch of length ωα, so does [α](k + 1). If T β is infinite then 〈〉 extends to a branch of length
ωα. Hence, by induction the relevant part [α](ωα) of this optimal play must be in T β , and is
therefore an approximation to an infinite branch.

The infinite pigeonhole principle: GN,NIPHP[ε] = (ε̃,max, 2)

The game corresponding to IPHP is a finite game with two rounds (or n rounds for the n-colour
Ramsey’s theorem). The strategy ε̃ at each round x = 0, 1 is to play the least move i ≤ εxp the
outcome p(i) of which satisfies

p(i) < i ∨ c(p(i)) 6= x.

We compute the optimal play 〈a0, a1〉, and its outcome is the maximum N = max{a0, a1}. But
then, at round x = c(N) we have

px(ax) ≥ ax ∧ c(px(ax)) = x

since px(ax) = N , which implies that the selection function ε̃x must fail to find a suitable can-
didate. But since we know that an optimal strategy must exist, the only explanation is that
such a candidate does not exist, or in other words, x, px form an approximation to the infinite
pigeonhole principle.

Following the discussion at the beginning of the section, it is not too hard to visualise how
these games combine to witness the functional interpretation of Ramsey’s theorem. We compute
an optimal strategy β in the game

GΠ0
1-AC[λβ.Kβ,ω, λβ.Nβ,ω]

where the outcome and control functions involve computing an optimal strategy αβ in the aux-
iliary game

GWKL[ωβ ]
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on T β . As a result we obtain two optimal strategies β, αβ that combine to form an approximation
aα,β to a min-monochromatic branch.

In addition, the control function ωβ is defined in terms of ϕaα,β , which in turn involves
computing an optimal strategy in a further auxiliary game

GIPHP[λx, p.ηx(aα,β ◦ p)]

where η is our counterexample function for RT2
2(c), in order to produce xa, pa required to compute

ϕa.
Therefore our program can be viewed in terms of the computational of optimal strategies in

three symbiotic games: one central game corresponding to Π0
1-AC and two nested auxiliary games

that are run each time we call on the relevant counterexample functions.
The computation as a whole returns an optimal strategy β of GΠ0

1-AC and an optimal strategy

αβ of GWKL that combine to form a sequence aα,β , along with pa, xa arising from optimal strategy

in GIPHP. Our realiser for the functional interpretation of Ramsey’s theorem F = aα,β ◦ paα,β and

x = xa
α,β

can therefore be written in terms of optimal strategies in these three games.
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