35 research outputs found

    Evolution of complex organic molecules in hot molecular cores: Synthetic spectra at (sub-)mm wavebands

    Full text link
    Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich emission line spectra at (sub-)mm wavebands. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s). The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. With increasing protostellar luminosity, the water ice evaporation font (\sim100K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 105^{5} year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from ALMA.[Abridged]Comment: accepted for publication in A&

    Blip10000: a social video dataset containing SPUG content for tagging and retrieval

    Get PDF
    The increasing amount of digital multimedia content available is inspiring potential new types of user interaction with video data. Users want to easilyfind the content by searching and browsing. For this reason, techniques are needed that allow automatic categorisation, searching the content and linking to related information. In this work, we present a dataset that contains comprehensive semi-professional user generated (SPUG) content, including audiovisual content, user-contributed metadata, automatic speech recognition transcripts, automatic shot boundary les, and social information for multiple `social levels'. We describe the principal characteristics of this dataset and present results that have been achieved on different tasks

    Kinematic structure of massive star-forming regions. I. accretion along filaments

    Get PDF
    Context. The mid- and far-infrared view on high-mass star formation, in particular with the results from the Herschel space observatory, has shed light on many aspects of massive star formation. However, these continuum studies lack kinematic information. Aims: We study the kinematics of the molecular gas in high-mass star-forming regions. Methods: We complemented the PACS and SPIRE far-infrared data of 16 high-mass star-forming regions from the Herschel key project EPoS with N2H+ molecular line data from the MOPRA and Nobeyama 45 m telescope. Using the full N2H+ hyperfine structure, we produced column density, velocity, and linewidth maps. These were correlated with PACS 70 μm images and PACS point sources. In addition, we searched for velocity gradients. Results: For several regions, the data suggest that the linewidth on the scale of clumps is dominated by outflows or unresolved velocity gradients. IRDC 18454 and G11.11 show two velocity components along several lines of sight. We find that all regions with a diameter larger than 1 pc show either velocity gradients or fragment into independent structures with distinct velocities. The velocity profiles of three regions with a smooth gradient are consistent with gas flows along the filament, suggesting accretion flows onto the densest regions. Conclusions: We show that the kinematics of several regions have a significant and complex velocity structure. For three filaments, we suggest that gas flows toward the more massive clumps are present

    G048.66-0.29: physical state of an isolated site of massive star formation

    Get PDF
    We present continuum observations of the infrared dark cloud (IRDC) G48.66-0.22 (G48) obtained with Herschel, Spitzer, and APEX, in addition to several molecular line observations. The Herschel maps are used to derive temperature and column density maps of G48 using a model based on a modified blackbody. We find that G48 has a relatively simple structure and is relatively isolated; thus, this IRDC provides an excellent target to study the collapse and fragmentation of a filamentary structure in the absence of complicating factors such as strong external feedback. The derived temperature structure of G48 is clearly non-isothermal from cloud to core scale. The column density peaks are spatially coincident with the lowest temperatures (~17.5 K) in G48. A total cloud mass of ~390 M ⊙ is derived from the column density maps. By comparing the luminosity-to-mass ratio of 13 point sources detected in the Herschel/PACS bands to evolutionary models, we find that two cores are likely to evolve into high-mass stars (M sstarf >= 8 M ⊙). The derived mean projected separation of point sources is smaller than in other IRDCs but in good agreement with theoretical predications for cylindrical collapse. We detect several molecular species such as CO, HCO+, HCN, HNC, and N2H+. CO is depleted by a factor of ~3.5 compared to the expected interstellar abundance, from which we conclude that CO freezes out in the central region. Furthermore, the molecular clumps, associated with the submillimeter peaks in G48, appear to be gravitationally unbound or just pressure confined. The analysis of critical line masses in G48 shows that the entire filament is collapsing, overcoming any internal support

    The physical and chemical structure of Sagittarius B2 -- VI. UCHII regions in Sgr B2

    Full text link
    The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact HII (UCHII) regions were identified in SgrB2's central hot cores, SgrB2(M) and SgrB2(N). Our aim is to characterize the properties of the HII regions in the entire SgrB2 cloud. Comparing the HII regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6 GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCHII regions and their dense gas environment. We identify 54 UCHII regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHII regions are newly discovered. The UCHII regions have radii between 0.006pc0.006 {\rm pc} and 0.04pc0.04 {\rm pc}, and have emission measure between 106pccm610^{6} {\rm pc\,cm^{-6}} and 109pccm610^{9} {\rm pc\,cm^{-6}}. The UCHII regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of 106109cm3\sim10^6-10^9 {\rm cm^{-3}} around the UCHII regions. The pressure of the UCHII regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHII regions is determined to be 104105yr\sim10^4-10^5 {\rm yr}. The percentage of the dust cores that are associated with HII regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. The electron densities of the UCHII regions we identified are in agreement with that of typical UCHII regions, while the radii are smaller than those of the typical UCHII regions. The dust cores in SgrB2(N) are more evolved than in SgrB2(DS) but younger than in SgrB2(M).Comment: 17 pages, 15 figure, accepted to A&

    The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68

    Get PDF
    Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims: We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods: In the framework of the Herschel guaranteed-time key programme 'The Earliest Phases of Star formation' (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12CO (2-1), and 13CO (2-1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results: For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36.″4. We find a temperature gradient dropping from (16.7-1.0+1.3) K at the edge to (8.2-0.7+2.1) K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. The column density peaks at NH = (4.3-2.8+1.4) × 1022 cm-2, and the central volume density was determined to nH = (3.4-2.5+0.9) × 105 cm-3. B68 has a mass of 3.1 M⊙ of material with AK > 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. At 100 and 160 μm, we observe a crescent of enhanced emission to the south. Conclusions: The dust temperature profile of B68 agrees well with previous estimates. We find the radial density distribution from the edge of the inner plateau outward to be nH ∝ r-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology seen at 100 and 160 μm. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament that dispersed. We also resolve a new compact source in the southeastern trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios

    The Earliest Phases of Star Formation (EPoS): A Herschel Key Program - The precursors to high-mass stars and clusters

    Get PDF
    (Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100, and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host cloud and investigate their evolutionary stage. We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 micron. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. The core population has a median temperature of 20K and has masses and luminosities that span four to five orders of magnitude. Cores with a counterpart at 24 micron are warmer and bluer on average than cores without a 24 micron counterpart. We conclude that cores bright at 24 micron are on average more advanced in their evolution, where a central protostar(s) have heated the outer bulk of the core, than 24 micron-dark cores. The 24 micron emission itself can arise in instances where our line of sight aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given cloud's core population. We uncover over 300 further candidate cores which are dark until 100 micron. These are candidate starless objects, and further observations will help us determine the nature of these very cold cores.Comment: Accepted for publication in A&A, 81 pages, 68 figures. For full resolution image gallery (Appendix B), see http://www.mpia.de/~ragan/epos.htm

    Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study

    Get PDF
    Background Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex. Methods CKD patients (>= 65 years; estimated glomerular filtration rate <= 20 mL/min/1.73 m(2)) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off <= 70; 0-100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders. Results Overall kidney function decline in 1326 patients was -0.12 mL/min/1.73 m(2)/month. A total of 515 patients showed depressive symptoms. No significant association was found between depressive symptoms and kidney function over time (P = 0.08). Unlike women, men with depressive symptoms had an increased mortality rate compared with those without symptoms [adjusted hazard ratio 1.41 (95% confidence interval 1.03-1.93)]. Depressive symptoms were not significantly associated with a higher hazard of dialysis initiation, or with the combined outcome (i.e. dialysis initiation and all-cause mortality). Conclusions There was no significant association between depressive symptoms at baseline and decline in kidney function over time in older patients with advanced CKD. Depressive symptoms at baseline were associated with a higher mortality rate in men

    Feature-based video key frame extraction for low quality video sequences

    No full text
    We present an approach to key frame extraction for structur-ing user generated videos on video sharing websites (e. g. YouTube). Our approach is intended to link existing image search engines to video data. User generated videos are, con-trary to professional material, unstructured, do not follow any fixed rule, and their camera work is poor. Furthermore, the coding quality is bad due to low resolution and high compres-sion. In a first step, we segment video sequences into shots by detecting gradual and abrupt cuts. Further, longer shots are segmented into subshots based on location and camera mo-tion features. One representative key frame is extracted per subshot using visual attention features, such as lighting, cam-era motion, face, and text appearance. These key frames are useful for indexing and for searching similar video sequences using MPEG-7 descriptors [1]. 1
    corecore