50 research outputs found
General no-go condition for stochastic pumping
The control of chemical dynamics requires understanding the effect of
time-dependent transition rates between states of chemo-mechanical molecular
configurations. Pumping refers to generating a net current, e.g. per period in
the time-dependence, through a cycle of consecutive states. The working of
artificial machines or synthesized molecular motors depends on it. In this
paper we give short and simple proofs of no-go theorems, some of which appeared
before but here with essential extensions to non-Markovian dynamics, including
the study of the diffusion limit. It allows to exclude certain protocols in the
working of chemical motors where only the depth of the energy well is changed
in time and not the barrier height between pairs of states. We also show how
pre-existing steady state currents are in general modified with a
multiplicative factor when this time-dependence is turned on.Comment: 8 pages; v2: minor changes, 1 reference adde
Twofold gain enhancement by elongation of QDs in polarization preserving QD-SOAs
The impact of quantum dot (QD) elongation on key parameters of QD-based semiconductor optical amplifiers (SOAs) is investigated using a combination of 8-band k·p-theory including strain and piezoelectricity up to second order and a rate equation model describing the population of QD ground, excited and wetting layer states. By considering columnar QDs of selected aspect ratios, we show that chip gain and saturation gain can be enhanced by up to +3.6 dB via an increased elongation of the individual QDs while retaining polarization preserving amplification and gain recovery times below 700 fs. Our results enable the optimization of polarization preserving QD-SOA devices which combine ultrafast gain recovery with high gain and low power consumption.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
Tuning the Emission Directionality of Stacked Quantum Dots
The emission directionality of stacks of coupled quantum dots (QDs) is investigated within the framework of 8-band k·p-theory including strain and strain-induced piezoelectricity up to second order. Using an artificial cuboidal QD, we show that the degree of radiation anisotropy can be tuned from −33% to nearly +60% via the structure’s vertical aspect ratio. We then demonstrate that these findings can be transferred to stacked InGaAs QDs whose emission directionality is tailored (i) via the interdot coupling strength given by the separating barrier width and (ii) the number of stacked QDs. Our results enable the design and optimization of top and edge emitters based on stacked QDs.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
Molecular Chemical Engines: Pseudo-Static Processes and the Mechanism of Energy Transduction
We propose a simple theoretical model for a molecular chemical engine that
catalyzes a chemical reaction and converts the free energy released by the
reaction into mechanical work. Binding and unbinding processes of reactant and
product molecules to and from the engine are explicitly taken into account. The
work delivered by the engine is calculated analytically for infinitely slow
(``pseudo-static'') processes, which can be reversible (quasi-static) or
irreversible, controlled by an external agent. It is shown that the work larger
than the maximum value limited by the second law of thermodynamics can be
obtained in a single cycle of operation by chance, although the statistical
average of the work never exceeds this limit and the maximum work is delivered
if the process is reversible. The mechanism of the energy transductionis also
discussed.Comment: 8 pages, 3 figues, submitted to J. Phys. Soc. Jp
Renewal processes and fluctuation analysis of molecular motor stepping
We model the dynamics of a processive or rotary molecular motor using a
renewal processes, in line with the work initiated by Svoboda, Mitra and Block.
We apply a functional technique to compute different types of multiple-time
correlation functions of the renewal process, which have applications to
bead-assay experiments performed both with processive molecular motors, such as
myosin V and kinesin, and rotary motors, such as F1-ATPase