116 research outputs found

    Crossed crystal scheme for fs-pulsed entangled photon generation in ppKTP

    Full text link
    We demonstrate a novel scheme for femto-second pulsed spontaneous parametric down-conversion in periodically poled KTP crystals. Our scheme is based on a crossed crystal configuration with collinear quasi-phase-matching. The non-degenerate photon pairs are split in a fiber-based wavelength division multiplexer. The source is easier to align than common pulsed sources based on bulk BBO crystals and exhibits high-quality polarization entanglement as well as non-classical interference capabilities. Hence, we expect this source to be a well-suited candidate for multi-photon state generation e.g. for linear optical quantum computation and quantum communication networks.Comment: 4 pages, 4 figure

    ABSENCE OF REENTRANCE IN THE TWO-DIMENSIONAL XY-MODEL WITH RANDOM PHASE SHIFT

    Full text link
    We show, that the 2D XY-model with random phase shifts exhibits for low temperature and small disorder a phase with quasi-long-range order, and that the transition to the disordered phase is {\it not} reentrant. These results are obtained by heuristic arguments, an analytical renormalization group calculation, and a numerical Migdal-Kadanoff renormalization group treatment. Previous predictions of reentrance are found to fail due to an overestimation of the vortex pair density as a consequence of independent dipole approximations. At positions, where vortex pairs are energetically favored by disorder, their statistics becomes effectively fermionic. The results may have implications for a large number of related models.Comment: 5 pages, latex, with 2 figures, one author added, minor text changes, to be published in J. de Physique

    Experimental quantum teleportation over a high-loss free-space channel

    Full text link
    We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network

    Quantum erasure with causally disconnected choice

    Full text link
    The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information, a particle feature, of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus in principle, physical communications between choice and interference were not excluded. Here we report a quantum eraser experiment, in which by enforcing Einstein locality no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether

    Experimental test of photonic entanglement in accelerated reference frames

    Get PDF
    The quantization of the electromagnetic field has successfully paved the way for the development of the Standard Model of Particle Physics and has established the basis for quantum technologies. Gravity, however, continues to hold out against physicists' efforts of including it into the framework of quantum theory. Experimental techniques in quantum optics have only recently reached the precision and maturity required for the investigation of quantum systems under the influence of gravitational fields. Here, we report on experiments in which a genuine quantum state of an entangled photon pair was exposed to a series of different accelerations. We measure an entanglement witness for gg values ranging from 30 mg to up to 30 g - under free-fall as well on a spinning centrifuge - and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. Our work represents the first quantum optics experiment in which entanglement is systematically tested in geodesic motion as well as in accelerated reference frames with acceleration a>>g = 9.81 m/s^2.Comment: 7 pages, 5 figure

    Quantum Communication Uplink to a 3U CubeSat: Feasibility & Design

    Full text link
    Satellites are the efficient way to achieve global scale quantum communication (Q.Com) because unavoidable losses restrict fiber based Q.Com to a few hundred kilometers. We demonstrate the feasibility of establishing a Q.Com uplink with a tiny 3U CubeSat (measuring just 10X10X32 cm^3 ) using commercial off-the-shelf components, the majority of which have space heritage. We demonstrate how to leverage the latest advancements in nano-satellite body-pointing to show that our 4kg CubeSat can provide performance comparable to much larger 600kg satellite missions. A comprehensive link budget and simulation was performed to calculate the secure key rates. We discuss design choices and trade-offs to maximize the key rate while minimizing the cost and development needed. Our detailed design and feasibility study can be readily used as a template for global scale Q.Com.Comment: 24 pages, 9 figures, 2 tables. Fixed tables and figure
    corecore