37 research outputs found

    Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells.

    Get PDF
    Many therapies using mesenchymal stem cells (MSC) rely on their ability to produce and release paracrine signals with chemotactic and pro-angiogenic activity. These characteristics, however, are mostly studied under standard in vitro culture conditions. In contrast, various novel cell-based therapies imply pre-seeding MSC into bio-artificial scaffolds. Here we describe human bone marrow-derived MSC seeded in Integra matrices, a common type of scaffold for dermal regeneration (SDR). We show and measured the distribution of MSC within the SDR, where cells clearly establish physical interactions with the scaffold, exhibiting constant metabolic activity for at least 15 days. In the SDR, MSC secrete VEGF and SDF-1α and induce transwell migration of CD34(+) hematopoietic/endothelial progenitor cells, which is inhibited in the presence of a CXCR4/SDF-1α antagonist. MSC in SDR respond to hypoxia by altering levels of angiogenic signals such as Angiogenin, Serpin-1, uPA, and IL-8. Finally, we show that MSC-containing SDR that have been pre-incubated in hypoxia show higher infiltration of endothelial cells after implantation into immune deficient mice. Our data show that MSC are fully functional ex vivo when implanted into SDR. In addition, our results strongly support the notion of hypoxic pre-conditioning MSC-containing SDR, in order to promote angiogenesis in the wounds

    Regeneration of blood vessels within diabetic wounds after treatment with mesenchymal stem cells

    Get PDF
    Diabetes is a chronic disease that affects more than 30 million Americans. This disorder leads to a variety of acute and chronic complications, including diabetic ulcers (chronic wounds). Chronic wounds often persist due to poor regeneration of the blood supply which is essential to bring nutrients for healing. Particularly, diabetic individuals are prone to damage in their peripheral tissues which leads to a high prevalence of ulcers in their extremities, often leading to limb amputations. The aim of this study is to improve healing outcomes for diabetics through the use of mesenchymal stem cells (MSCs) to stimulate healing, in which vasculogenesis is an important aspect. Catecholamines such as epinephrine (adrenaline) are prevalent in diabetic foot ulcer tissue and have been shown to inhibit wound healing. In this study, healing rates of type II diabetic mice wounds were evaluated when human MSCs were delivered within a collagen scaffold (IntegraTM) and treated with Timolol, a beta blocker that inhibits the effects of epinephrine. We examined wounded mice after 7 days that had received either no MSCs (control), MSCs, or MSCs treated with timolol for blood vessel development using immunohistochemical staining and confocal fluorescence microscopy. Blood vessel biomarkers GSL-I Isolectin B4 and CD31 were used to stain the wound tissue and fluorescent imaging data was quantified using software. Our results indicate that wound tissue treated with MSCs and timolol had the highest blood vessel regeneration and it was statistically significant when compared to control levels. Additionally, a Fluorescent in situ Hybridization (FISH) protocol to identify human chromosomes was successfully implemented using positive and negative control slides so that human MSCs can be identified when delivered to mouse wound tissue. Future experiments will examine how long the MSCs persist and whether they migrate outside the wound tissue bed

    Acute Wounding Alters the Beta2-Adrenergic Signaling and Catecholamine Synthetic Pathways in Keratinocytes

    Get PDF
    Keratinocyte migration is critical for wound re-epithelialization. Previous studies showed that epinephrine activates the beta2-adrenergic receptor (B2AR), impairing keratinocyte migration. Here, we investigated the keratinocyte catecholamine synthetic pathway in response to acute trauma. Cultured keratinocytes were scratch wounded and expression levels of the B2AR and catecholamine synthetic enzymes tyrosine hydroxylase and phenylethanolamine-N-methyltransferase were assayed. The binding affinity of the B2AR was measured. Wounding downregulated B2AR, tyrosine hydroxylase, and phenylethanolamine-N-methyltransferase expression, but pre-exposure to timolol, a beta-adrenergic receptor antagonist, delayed this effect. In wounded keratinocytes, B2AR-binding affinity remained depressed even after its expression returned to prewounding levels. Keratinocyte-derived norepinephrine increased after wounding. Norepinephrine impaired keratinocyte migration; this effect was abrogated with B2AR-selective antagonist ICI-118,551 but not with B1AR-selective antagonist bisoprolol. Finally, for clinical relevance, we determined that norepinephrine was present in freshly wounded skin, thus providing a potential mechanism for impaired healing by local B2AR activation in wound-edge keratinocytes. Taken together, the data show that keratinocytes modulate catecholamine synthetic enzymes and release norepinephrine after scratch wounding. Norepinephrine appears to be a stress-related mediator that impairs keratinocyte migration through activation of the B2AR. Future therapeutic strategies evaluating modulation of norepinephrine-related effects in the wound are warranted

    Effects of Intermittent IL-2 Alone or with Peri-Cycle Antiretroviral Therapy in Early HIV Infection: The STALWART Study

    Get PDF
    The Study of Aldesleukin with and without antiretroviral therapy (STALWART) evaluated whether intermittent interleukin-2 (IL-2) alone or with antiretroviral therapy (ART) around IL-2 cycles increased CD4+ counts compared to no therapy

    Crosstalk between adrenergic and toll-like receptors in human mesenchymal stem cells and keratinocytes: a recipe for impaired wound healing.

    No full text
    Previous studies demonstrate that skin wounds generate epinephrine (EPI) that can activate local adrenergic receptors (ARs), impairing healing. Bacterially derived activators of Toll-like receptors (TLRs) within the wound initiate inflammatory responses and can also impair healing. In this study, we examined the hypothesis that these two pathways crosstalk to one another, using EPI and macrophage-activating lipopeptide-2 (MALP2) to activate ARs and TLR2, respectively, in human bone marrow-derived mesenchymal stem cells (BM-MSCs) and neonatal keratinocytes (NHKs). BM-MSCs exposed to EPI significantly (p < .05) increased TLR2 message (sevenfold BM-MSCs), TLR2 protein (twofold), and myeloid differentiation factor 88 (MyD88) (fourfold). Conversely, activation of TLR2 by MALP2 in these cells increased β2-AR message (twofold in BM-MSCs, 2.7-fold in NHKs), β2-AR protein (2.5-fold), phosphorylation of β-AR-activated kinase (p-BARK, twofold), and induced release of EPI from both cell types (twofold). Treating cells with EPI and MALP2 together, as would be encountered in a wound, increased β2-AR and p-BARK protein expression (sixfold), impaired cell migration (BM-MSCs- 21%↓ and NHKs- 60%↓, p < .002), and resulted in a 10-fold (BM-MSCs) and 51-fold (NHKs) increase in release of IL-6 (p < .001) responses that were remarkably reduced by pretreatment with β2-AR antagonists. In vivo, EPI-stressed animals exhibited impaired healing, with elevated levels of TLR2, MyD88, and IL-6 in the wounds (p < .05) relative to nonstressed controls. Thus, our data describe a recipe for decreasing cell migration and exacerbating inflammation via novel crosstalk between the adrenergic and Toll-like receptor pathways in BM-MSCs and NHKs
    corecore