107 research outputs found

    The epithelial sodium channel in inflammation and blood pressure modulation

    Get PDF
    A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(β)/gamma(γ) or delta(δ)/beta(β)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension

    Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens

    Get PDF
    Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. We have identified monoclonal anti-DNA antibodies derived from lupus prone MRL-lpr/lpr mice that produce glomerular immune deposits and nephritis after passive transfer to normal mice. Particularly noteworthy is that the location of immune deposition varied among nephritogenic Ig, and this was associated with distinctive histologies and clinical disease profiles. Although their autoantigen binding properties differed, they were highly cross-reactive, in a manner similar to Ig deposited in glomeruli of lupus mice. This antigen binding profile was also typical of other previously described nephritogenic autoantibodies that bound directly to glomerular antigens to initiate immune deposit formation. In this study, we questioned whether ligation of different glomerular antigens by individual autoantibodies could contribute to the observed differences in the location of immune deposits. To examine this possibility, monoclonal anti-DNA antibodies (IgG2a) that produced glomerular immune deposits in different locations were evaluated. H221 produced mesangial, intracapillary (that is, intraluminal or within the capillary lumen) and subendothelial deposits associated with heavy proteinuria, whereas H147 produced mesangial, subendothelial and linear basement membrane deposits associated with proliferative glomerulonephritis. Initially, the capacity of H221 and H147 to bind directly to glomerular and vascular cell surfaces was evaluated. As demonstrated by FACS, H221 bound preferentially to mesangial cells whereas H147 bound preferentially to endothelial cells. To identify possible target cell surface antigens, Western blots, immunoprecipitation of surface labeled cells, and 2D gel electrophoresis were employed. H221 reacted with a 108kDa protein on mesangial cells not identified by H147, whereas H147 reacted with a 45kDa protein on endothelial cells not identified by H221. These results support the hypothesis that some nephritogenic lupus autoantibodies initiate immune deposit formation through direct interaction with glomerular antigens. Furthermore, they suggest that the site of immune deposition is determined by both antigen binding properties of the relevant antibody and the location of its target ligand within the glomerulus. In a given individual, therefore, the predominant autoantibody-glomerular antigen interaction may influence the morphologic and clinical phenotype expressed. Variation in the predominant interaction may also contribute to variations in disease expression among individuals with lupus nephritis

    Effects of biomechanical forces on signaling in the cortical collecting duct (CCD)

    Get PDF
    An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm2 of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Renal physiology: an evolving field

    No full text

    Editor's Note

    No full text

    Effects of amiloride on acetylcholine‐dependent arterial vasodilation evolve over time in mice on a high salt diet

    No full text
    Abstract The maintenance of endothelial health is required for normal vascular function and blood pressure regulation. The epithelial Na+ channel (ENaC) in endothelial cells has emerged as a new molecular player in the regulation of endothelial nitric oxide production and vascular stiffness. While ENaC expression in the kidney is negatively regulated by high [Na+], ENaC expression in isolated endothelial cells has been shown to increase in response to a high extracellular [Na+]. In culture, this increased expression leads to cellular stiffening and decreased nitric oxide release. In vivo, the effects of high salt diet on endothelial ENaC expression and activity have varied depending on the animal model utilized. Our aim in the present study was to examine the role of endothelial ENaC in mediating vasorelaxation in the C57Bl/6 mouse strain. We utilized pressure myography to test the responsiveness of thoracodorsal arteries to acetylcholine in mice with increased sodium consumption both in the presence and absence of increased aldosterone. ENaC’s contribution was assessed with the use of the specific inhibitor amiloride. We found that while aldosterone had very little effect on ENaC's contribution to acetylcholine sensitivity, a high salt diet led to an amiloride‐dependent shift in the acetylcholine response of vessels. However, the direction of this shift was dependent on the length of high salt diet administration. Overall, our studies reveal that ENaC's role in the endothelium may be more complicated than previously thought. The channel does not simply inhibit nitric oxide generation, but instead helps preserve a homeostatic response
    corecore