122 research outputs found

    Axon Trapping: Constructing the Visual System One Layer at a Time

    Get PDF
    The molecular mechanisms that instruct the formation of synaptic layers are only incompletely understood. In this issue of Neuron, Timofeev et al. (2012) describe an instructive role for the guidance molecule Netrin and its receptor Frazzled in mediating layer-specific targeting of one photoreceptor cell type in the Drosophila visual system

    Drosophila LAR Regulates R1-R6 and R7 Target Specificity in the Visual System

    Get PDF
    AbstractDifferent classes of photoreceptor neurons (R cells) in the Drosophila compound eye connect to specific targets in the optic lobe. Using a behavioral screen, we identified LAR, a receptor tyrosine phosphatase, as being required for R cell target specificity. In LAR mutant mosaic eyes, R1-R6 cells target to the lamina correctly, but fail to choose the correct pattern of target neurons. Although mutant R7 axons initially project to the correct layer of the medulla, they retract into inappropriate layers. Using single cell mosaics, we demonstrate that LAR controls targeting of R1-R6 and R7 in a cell-autonomous fashion. The phenotypes of LAR mutant R cells are strikingly similar to those seen in N-cadherin mutants

    Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila

    Get PDF
    SummarySpecifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date [1–5]. In Drosophila, six photoreceptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map [6, 7]. Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated [8–10]. However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a “hard-wired” visual map in the fly brain

    Inositol 1,4,5-Trisphosphate Signalling Regulates the Avoidance Response to Nose Touch in Caenorhabditis elegans

    Get PDF
    When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP3R), encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cβ (EGL-8) and phospholipase Cγ (PLC-3), which catalyse the production of IP3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch–induced Ca2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP3R in two specific responses mediated by ASH

    Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS: Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS: These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA

    Visual Transduction: Microvilli Orchestrate Photoreceptor Responses to Light

    Get PDF
    SummaryHow do the microscopic properties of a photoreceptor shape the transformation of photon inputs into electrical outputs? Adaptive feedback, combined with stochastic sampling of light by transduction units, efficiently captures visual information

    Molecular and Cellular Mechanisms of Lamina-specific Axon Targeting

    No full text
    The specificity of synaptic connections is directly related to the functional integrity of neural circuits. Long-range axon guidance and topographic mapping mechanisms bring axons into spatial proximity of target cells and thus limit the number of potential synaptic partners. Synaptic specificity is then achieved by extracellular short-range guidance cues and cell-surface recognition cues. Neural activity may enhance the precision and strength of specific circuit connections. Here, we focus on one of the final steps of synaptic matchmaking: the targeting of synaptic layers and the mutual recognition of axons and dendrites within these layers

    Extremely sparse olfactory inputs are sufficient to mediate innate aversion in Drosophila.

    No full text
    Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs) each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs). To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN) representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction
    • …
    corecore