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Visual Transduction: Microvilli Orchestrate Photoreceptor
Responses to Light
How do the microscopic properties of a photoreceptor shape the
transformation of photon inputs into electrical outputs? Adaptive feedback,
combined with stochastic sampling of light by transduction units, efficiently
captures visual information.
Limor Freifeld1,*
and Thomas R. Clandinin2,*

All sensory systems capture
information from the environment and
represent it in electrical signals. As
information that is lost at the first step
in sensory transduction cannot be
recovered, the fidelity of this process
sets the performance limit for what
downstream neural circuits can deduce
about the world. These environmental
cues can be presented across an
incredible range of intensities.
Photoreceptors, for example, must
reliably transduce information both
under very dim illumination, where only
a few single photons are available,
through broad daylight, when fluxes
of millions of photons per second are
routine (Figure 1A). Moreover, in fast
flying insects like Diptera, visually
guided course control requires
photoreceptors to detect rapid
changes in light intensity, approaching
the millisecond time scale. Thus,
understanding how sensory cells like
photoreceptors are constructed to
rapidly and reliably encode information
across a wide range of input regimes
represents an important challenge.
In a study reported in this issue of
Current Biology, Song et al. [1] derive
a quantitative model that explains
how the cellular and biophysical
properties of photoreceptors and the
transduction machinery shape
response dynamics and information
coding properties at both low and
high light intensities.

The insect compound eye collects
light through an array of small lenses
that together sample visual information
across space [2]. In Diptera, each
of these unit eyes, the ommatidia,
contains eight photoreceptors that
detect light along distinct visual
axes [3]. Each photoreceptor has
a prominent apical specialization, the
rhabdomere, a cylindrical body that
functions as a light-guide, maximizing
photon absorption. Each rhabdomere
comprises thousands of oriented,
finger-like protrusions known as
microvilli. These microvilli contain the
visual pigment rhodopsin, as well as
the set of molecules that comprise
the phototransduction cascade, linking
photon absorption to the production
of the light-induced current (Figure 1B;
reviewed in [4,5]). Genetic, molecular
and electrophysiological approaches
have defined many of the molecular
and biophysical properties of
phototransduction [4,5]. Absorption
of a single photon, followed by
amplification of this signal via
a sequence of biochemical reactions,
gives rise to a typical current transient
called a ‘quantum bump’. In
Drosophila, a quantum bump arises
via the sequential activation of
rhodopsin, a heterotrimeric
G-protein, phospholipase C, and two
TRP channels, opening of which
causes membrane depolarization
(Figure 1B; [4,6]).

This signaling pathway is the fastest
known G-protein-coupled signaling
pathway [5]. As each microvillus
contains all of the components
necessary to generate a bump, each
acts as an individual photodetector
with single photon sensitivity. After
absorbing a photon and producing
a bump, a microvillus enters a brief
refractory state that must end before
a new photon can be productively
absorbed. A given photoreceptor’s
response to a light input then reflects
the integrated output of all active
microvilli at each time point. However,
how the response dynamics of
individual microvilli might be affected
by global adaptation signals and
integrated across the population
to give rise to efficient information
transfer was previously unknown.
Using a detailed model
incorporating much of these data,
Song et al. [1] quantitatively
simulate a photoreceptor, and
examine the individual components
that give rise to its dynamic
responses. This model explains
how orchestrated properties of the
population of microvilli, combined
with global feedback mechanisms,
gives rise to an adaptive and
stochastic sampling scheme
that yields efficient information
encoding (Figure 1C). While stochastic
sampling of microvilli contributes to
the prevention of saturation and
equalizes the use of available cellular
resources, adaptation adjusts
performance to input light conditions.
Put together, these mechanisms
achieve output contrast constancy,
novel event enhancement, and
reliable signal to noise reporting
within a range of frequencies
appropriate for different Diptera,
across a wide range of illumination
levels (Figure 1D).
Song et al. [1] begin by putting

the phototransduction cascade into
a broader context, emphasizing
that each quantum bump can be
considered a sample of the light
level. The shape of the sample, or,
equivalently, the bump waveform and
its latency distribution, is established
via Ca2+-dependent global feedback
mechanisms, as well as membrane
voltage effects, that together make
bumps smaller and briefer during light
adaptation [6,7]. This increase in the
‘temporal resolution’ of the bump
enables photoreceptors to encode
higher frequency information under
brighter illumination. At the same time,
the sample rate, or equivalently, the
bump production rate, is established
via the availability of microvilli to
actively absorb photons. This, in turn,
depends on the dynamically changing
refractory period of each microvillus
(Figure 1C). Thus, under low light
conditions, most microvilli are
available to be activated, maximizing
the quantum efficiency of the
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Figure 1. Adaptive feedback and stochastic sampling capture photoreceptor responses.

(A) Light inputs are dynamic, and can comprise small (at night) or large photon fluxes (during
the day). (B) Microvillar activity is sparse when the photon flux is weak (blue) and dense when
the photon flux is strong (red). Microvilli that are unavailable, either because they are active or
because they are within the refractory period, are filled; available microvilli are empty. Each
photon is amplified by a set of biochemical reactions (middle). This process is modulated
by two feedback mechanisms: photoreceptor membrane voltage (Vm) and intracellular Ca2+

concentration ([Ca2+]). (C) Phototransduction as an adaptive and stochastic sampling proce-
dure. Bump production rates (top) are convolved with dynamically changing bump shapes.
Feedback reduces the amplitude of bumps and makes them more transient (middle). The
output currents of all microvilli are summed (bottom). Blue: dim light levels. Red: bright light
levels. (D) The photoreceptor output–membrane voltage feedback acts to compress the
output waveform (dashed gray curve, before compression; blue and red curves, after
compression). The dynamics of the voltage output closely follow that of the light input at
both dim (blue) and bright (red) light levels with only a modest reduction in signal to noise ratio
at low light levels.
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photoreceptor, while under high light
conditions, many microvilli have
already been activated, and are now
in the refractory state, reducing the
quantum efficiency of the
photoreceptor.
Previous modeling efforts had
already accounted for the generation
of quantum bumps in response to
single photon arrival, the shaping of
bumps via feedback mechanisms, the
associated distribution of latencies,
and the control of the membrane
voltage in photoreceptors [8–10]. But
by putting all of these components
together, Song et al [1] have been
able to determine which processes
govern performance under different
conditions. For example, at high light
levels, there is a rapid initial adaption
process that reflects microvillar
availability: when the first photons
arrive, most microvilli are available,
get activated and enter the refractory
state simultaneously; photons that
arrive later thereby encounter fewer
microvilli that can be activated, and
hence are less likely to be captured.
In addition, there also exists a slower
adaptation process that occurs at all
light levels in which bump sizes
decline continuously over time, an
inhibitory effect attributable to
calcium accumulation, and membrane
depolarization.
Interestingly, as not all microvilli

can be simultaneously active, and
availability is governed by both the
stochasticity of successful activation
of the transduction cascade by an
absorbed photon as well as by the
distribution of refractory periods,
saturation is prevented. Thus, while
the quantum efficiency of photon
absorption drops at high levels, the
information rate does not. Finally, Song
et al. [1] demonstrate that their
adaptive and stochastic sampling
scheme can reliably describe
information rates and signal to noise
ratios as a function of frequency for
photoreceptors in multiple fly species
by appropriate adjustment of model
parameters. Thus, the model also
reveals exactly how a few critical
properties of the photoreceptor and the
phototransduction process can
be adjusted to match very different
expected distributions of input
frequencies associated with the
different lifestyles of different kinds
of flies.
At a high level, photoreceptors

transform a set of discrete events,
photon absorptions, into analog
signals, membrane voltages, that are
relayed via synaptic vesicle release to
downstream circuitry. This type of
transition between discrete and analog
signaling is widespread in the nervous
system. For example, analogous
transitions occur when discrete
opening and closing events of ion
channels are converted into current
flows and membrane voltages. It will
be interesting to examine whether
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the principles of adaptive and
stochastic sampling that have been
shown by Song et al. [1] to shape the
discrete to analog conversion
performed by photoreceptors are
also applicable to other digital to
analogue transitions in the brain.
Future studies will reveal whether
a general scheme for optimal
information representation across
these transitions exists.
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Endocytic Traffic: Vesicle Fusion
Cascade in the Early Endosomes
New research shows that vesicles in the early endosomal network coalesce
according to a classical theoretical description of aggregation put forward by
Smoluchowski more than 100 years ago. This gives a new tool for unraveling
complexities of the endocytic pathways.
Michael P. Brenner

Endocytic pathways are dizzyingly
complex [1,2]. Signals and cargo from
outside of the plasma membrane are
packaged into vesicles that are
directed en masse to different parts
of the cell. Over the years, much has
been discovered about the molecular
origin of signals and processes that
govern these pathways [3–5]. However,
it has not yet been possible to directly
observe the detailed fate of the
multiplicity of vesicles as they progress
from the plasma membrane to their
ultimate destination.

The flux of information and materials
from the plasma membrane to the
interior of the cell is made up of many
microscopic events involving such
vesicles, and aspects of the endocytic
pathways will remain elusive until
the nature of these individual events
can be resolved. What is the rate of
vesicle fusion? What is the rate of
vesicle fission? Do these rates depend
on the cargo? How do fission and
fusion depend on the protein
composition of the vesicle membrane?
Quantitative answers to questions such
as these would shed light on the
mechanisms underlying endocytic
pathways.

A new study in this issue of Current
Biology by Foret et al. [6] provides
further support to the idea that the early
endosomal network is a vesicle fusion
cascade, in which the dominant effect
is the continuous merger of small
vesicles into larger ones, which carry
more and more cargo. Strikingly,
the quantitative laws governing this
cascade are essentially identical
to those that were predicted nearly
100 years ago by Smoluchowski [7],
and followed up years later by
Chandrasekhar [8], in imagining the
aggregation of small (e.g. colloidal)
particles into large clusters [9].

To establish this conclusion, Foret
et al. [6] directly imaged endosomal
populations in HeLa cells, which
were transfected with a transgene
expressing a GFP-tagged version of
Rab5c, a marker of the early endocytic
pathway [10]. Cells in the early
endosome therefore could be visually
identified in a confocal microscope
by GFP–Rab5 fluorescence. To study
flux through the pathway itself, these
authors then allowed the cells to take
up low-density lipoprotein (LDL), which
had been labelled with a different
fluorophore, for a fixed period of
time and imaged the endosomal
co-localization of Rab-5 and LDL.
They then quantified the number
of endosomes — n(s) — with an LDL
fluorescence intensity, s. By measuring
this distribution for cells that had
been allowed to take up the LDL for
different time periods, they directly
measured the time course of
movement of fluorescent LDL through
the early endosomal pathway. With
increasing time exposure, the average
amount of LDL in each endosome
grows; over the course of an hour,
the maximum fluorescence in a single
endosome increases more than
10-fold.
To quantitatively interpret their

results, Foret et al. [6] use a classical
analysis of aggregation kinetics
introduced by Smoluchowski [7], and
expanded upon by Chandresekhar [8]
(also see review by Leyvraz [11]). In
its original form, this was imagined as
a way to quantify the coagulation of
small sticky particles undergoing
Brownian motion in a liquid. When two
particles collide they stick to each
other, forming a cluster. When two
clusters collide, they create a yet larger
cluster. To predict the rate at which
clusters grow, Smoluchowski wrote
down a set of chemical rate equations
for the number of clusters of a given
size. For example, a cluster of five
particles can be made by combining
a four particle cluster with a single
particle, or a two particle cluster with
a three particle cluster. Note that
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