57 research outputs found

    Rapid high-throughput analysis of DNaseI hypersensitive sites using a modified Multiplex Ligation-dependent Probe Amplification approach

    Get PDF
    BACKGROUND: Mapping DNaseI hypersensitive sites is commonly used to identify regulatory regions in the genome. However, currently available methods are either time consuming and laborious, expensive or require large numbers of cells. We aimed to develop a quick and straightforward method for the analysis of DNaseI hypersensitive sites that overcomes these problems. RESULTS: We have developed a modified Multiplex Ligation-dependent Probe Amplification (MLPA) approach for the identification and analysis of genomic regulatory regions. The utility of this approach was demonstrated by simultaneously analysing 20 loci from the ENCODE project for DNaseI hypersensitivity in a range of different cell lines. We were able to obtain reproducible results with as little as 5 x 10(4) cells per DNaseI treatment. Our results broadly matched those previously reported by the ENCODE project, and both technical and biological replicates showed high correlations, indicating the sensitivity and reproducibility of this method. CONCLUSION: This new method will considerably facilitate the identification and analysis of DNaseI hypersensitive sites. Due to the multiplexing potential of MLPA (up to 50 loci can be examined) it is possible to analyse dozens of DNaseI hypersensitive sites in a single reaction. Furthermore, the high sensitivity of MLPA means that fewer than 10(5) cells per DNaseI treatment can be used, allowing the discovery and analysis of tissue specific regulatory regions without the need for pooling. This method is quick and easy and results can be obtained within 48 hours after harvesting of cells or tissues. As no special equipment is required, this method can be applied by any laboratory interested in the analysis of DNaseI hypersensitive regions

    Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion

    Get PDF
    Most humans harbor both CD177neg and CD177pos neutrophils but 1–10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1), which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation

    Heterogeneity of human Neutrophil CD177 expression results from CD177P1 Pseudogene Conversion

    Get PDF
    Most humans harbor both CD177neg and CD177pos neutrophils but 1–10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1), which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation

    Functional characterisation of novel NR5A1 variants reveals multiple complex roles in Disorders of Sex Development

    Get PDF
    Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the functional effect of these changes in relation to the patient phenotype. All novel variants tested had reduced trans-activational activity, while several had altered protein level, localization, or conformation. In addition, we found evidence of new roles for SF1 protein domains including a region within the ligand binding domain that appears to contribute to SF1 regulation of Mu¨llerian development. There was little correlation between the severity of the phenotype and the nature of the NR5A1 variant. We report two familial cases of NR5A1 deficiency with evidence of variable expressivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnostic variants. It highlights a greater need for understanding the complexity of SF1 function and the additional factors that contribute

    Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis

    Get PDF
    Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    Rapid high-throughput analysis of DNaseI hypersensitive sites using a modified Multiplex Ligation-dependent Probe Amplification approach

    No full text
    Abstract Background Mapping DNaseI hypersensitive sites is commonly used to identify regulatory regions in the genome. However, currently available methods are either time consuming and laborious, expensive or require large numbers of cells. We aimed to develop a quick and straightforward method for the analysis of DNaseI hypersensitive sites that overcomes these problems. Results We have developed a modified Multiplex Ligation-dependent Probe Amplification (MLPA) approach for the identification and analysis of genomic regulatory regions. The utility of this approach was demonstrated by simultaneously analysing 20 loci from the ENCODE project for DNaseI hypersensitivity in a range of different cell lines. We were able to obtain reproducible results with as little as 5 × 104 cells per DNaseI treatment. Our results broadly matched those previously reported by the ENCODE project, and both technical and biological replicates showed high correlations, indicating the sensitivity and reproducibility of this method. Conclusion This new method will considerably facilitate the identification and analysis of DNaseI hypersensitive sites. Due to the multiplexing potential of MLPA (up to 50 loci can be examined) it is possible to analyse dozens of DNaseI hypersensitive sites in a single reaction. Furthermore, the high sensitivity of MLPA means that fewer than 105 cells per DNaseI treatment can be used, allowing the discovery and analysis of tissue specific regulatory regions without the need for pooling. This method is quick and easy and results can be obtained within 48 hours after harvesting of cells or tissues. As no special equipment is required, this method can be applied by any laboratory interested in the analysis of DNaseI hypersensitive regions.</p

    Over-expression of DMRT1 from <i>SF1p</i> in embryonic gonads.

    No full text
    <p>Immunostaining for key testis and ovarian developmental genes (red) in RCANBP-SF1p-EGFP infected E7.5 embryos (magnification 10×). Low-level over-expression of DMRT1 was evident in the gonads of RCANBP-SF1p-DMRT1 infected embryos compared to the control female. This over-expression did not cause any change in the expression of SOX9 in the female or aromatase in the male.</p

    Schematic representation of putative gonad promoter sequences.

    No full text
    <p>All numbers shown are relative to the transcriptional start site (TSS) for each putative promoter sequence. The <i>SF1p</i> contains several promoter elements that have been described previously <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0101811#pone.0101811-Kudo1" target="_blank">[16]</a>. Both <i>aromatase</i> and <i>AMH</i> promoters contain TATA boxes and consensus SF1 binding sites. The <i>AMH</i> promoter also contains an estrogen responsive element (ERE). The <i>WT1</i> promoter is TATA-less and no other binding elements were identified. All promoter sequences were cloned into the RCANBP viral vector directly upstream of the EGFP open reading frame.</p
    • …
    corecore