152 research outputs found

    U(1) Wilson lattice gauge theories in digital quantum simulators

    Get PDF
    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication [Nature 534, 516 (2016)], we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales only polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle--antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude

    Characterizing quantum instruments: from non-demolition measurements to quantum error correction

    Full text link
    In quantum information processing quantum operations are often processed alongside measurements which result in classical data. Due to the information gain of classical measurement outputs non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution. Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states. Here we present a general recipe to characterize quantum instruments alongside its experimental implementation and analysis. Thereby, the full dynamics of a quantum instrument can be captured, exhibiting details of the quantum dynamics that would be overlooked with common tomography techniques. For illustration, we apply our characterization technique to a quantum instrument used for the detection of qubit loss and leakage, which was recently implemented as a building block in a quantum error correction (QEC) experiment (Nature 585, 207-210 (2020)). Our analysis reveals unexpected and in-depth information about the failure modes of the implementation of the quantum instrument. We then numerically study the implications of these experimental failure modes on QEC performance, when the instrument is employed as a building block in QEC protocols on a logical qubit. Our results highlight the importance of careful characterization and modelling of failure modes in quantum instruments, as compared to simplistic hardware-agnostic phenomenological noise models, which fail to predict the undesired behavior of faulty quantum instruments. The presented methods and results are directly applicable to generic quantum instruments.Comment: 28 pages, 21 figure
    corecore