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Abstract
Lattice gauge theories describe fundamental phenomena innature, but calculating their real-time
dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016
Nature534516), weproposed and experimentally demonstrated adigital quantumsimulationof the
paradigmatic Schwingermodel, aU(1)-Wilson lattice gauge theory describing the interplay between
fermionicmatter and gaugebosons.Here,weprovide adetailed theoretical analysis of the performance
and thepotential of this protocol.Our strategy is basedon analytically integrating out the gauge bosons,
whichpreserves exact gauge invariance but results in complicated long-range interactions between the
matterfields. Trapped-ionplatforms arenaturally suited to implementing these interactions, allowing for
an efficient quantumsimulationof themodel,with anumber of gate operations that scales polynomially
with systemsize. Employingnumerical simulations,we illustrate that relevantphenomenacanbeobserved
in larger experimental systems, using as an example the productionof particle–antiparticle pairs after a
quantumquench.We investigate theoretically the robustness of the scheme towards generic error sources,
and show that near-future experiments can reach regimeswherefinite-size effects are insignificant.We
alsodiscuss the challenges in quantumsimulating the continuum limit of the theory.Usingour scheme,
fundamental phenomenaof lattice gauge theories canbeprobedusing a broad set of experimentally
accessible observables, including the entanglement entropy and the vacuumpersistence amplitude.

1. Introduction

In [1], we presented an efficient scheme that allows for the quantum simulation of real-time dynamics of lattice
gauge theories and reported on its experimental realization in a systemof trapped ions. The purpose of the
present paper is twofold:first, we give a detailed account of the theoretical basis behind the experimental
demonstration in [1]. Second, we address questions relevant to future experimental work, including a careful
analysis of the effect of imperfections and a discussion of the scalability of the approach tomesoscopic system
sizes.We concentrate here on trapped-ion implementations of the type described in [2, 3]. This platform allows
one to realize a spin chainwhere (i) local operations can be performedwith high fidelity and (ii) an all-to-all two-
body interaction can be induced between the spin degrees of freedomusing so-calledMølmer–Sørensen gates
[4–7]. Our scheme uses these resources in an highly efficient way and is specifically tailored to realizeWilson’s
formulation of gauge theories on a discrete lattice, which provides an ideal starting point to investigate the
dynamics of gauge theories within a non-perturbative framework [8–10].

At equilibrium, and in certain parameter regimes (e.g. at zero chemical potential) quantumMonteCarlo
simulations of lattice gauge theories can be carried out very efficiently [9, 10]. However, non-equilibrium
properties, as relevant for a variety of high-energy physics phenomena including particle–antiparticle
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production at high-intensity laser facilities [11, 12], are not accessible, due to the fundamental sign (or complex
action) problem affecting numerical simulations in real time [13]. In the last few years, several proposals for
quantum simulations of real-time dynamics of lattice gauge theories have been put forward [14–16], based on a
variety of platforms ranging from cold atoms in optical lattices [17–23], to superconducting circuits [24, 25] and
trapped ions [26, 27]. Themain difficulties in implementing gauge theories in quantum simulators stem from
the fact that complexmany-body interactions have to be realized, while at the same time local (gauge)
symmetries have to be imposed on the systemdynamics [14–16]. To address these challenges, we proposed [1] to
use encoding techniques, which exploit an analytical elimination of gauge fields. This approach allowed us to
realize a digital quantum simulation scheme [28] in a systemof trapped ions, that simulates the Schwingermodel
[29, 30], which describes quantum electrodynamics in (1+1) dimensions (1 spatial dimension+ time).

The Schwingermodel represents a simple, yet paradigmatic example of aU(1) gauge theory. It describes the
coupling of fermions to a dynamical electromagnetic field in (1+1) dimensions, and exhibits a series of
phenomena, such as chiral symmetry breaking and confinement [13, 31], that play a key role in the current
understanding ofmore complex theories such as quantum chromodynamics [10]. The real-time dynamics of
the Schwingermodel includes the spontaneous creation of particle–antiparticle pairs [32]. Despite the simplicity
of themodel, such phenomena are notoriously hard to simulate numerically,mostly due to the absence of
controlledmethods to address real-time dynamics7. The Schwingermodel provides a good starting point for
studies of lattice gauge theories, since interesting physical insights can be gained usingmoderate experimental
resources due to the reduced dimensionality. In quantum simulators, the real-time dynamics can be probed
using a rich set of observables including entanglement entropies and vacuumpersistence amplitudes.While the
study of quantum information concepts such as entanglement in the context of high-energy physics is a rather
recent development [39–41], vacuumpersistence amplitudes play an important role for the theoretical
understanding of spontaneous pair creation already in Schwinger’s original work [29, 42].

In this article, we explain in detail how an efficient implementation of the Schwingermodel can be carried
out by combining the toolkit of digital quantum simulation [2, 3, 7, 43, 44]with techniques used in numerical
computations on classical computers (so-called encoding techniques [45]). In thismodel of (1+1)d quantum
electrodynamics, electrons and positrons appear in the formof fermionfields that are defined on a lattice, and
which interact via electric field gauge bosons that are defined on the links between lattice sites (seefigure 1). For
implementing themodel, the fermionic operators can bemapped to Pauli spin operators, which are the natural
degrees of freedom in spin-based quantum simulators [2, 3, 7, 43]. The gauge field operators, in contrast, are
associatedwith an infinite-dimensionalHilbert space, which poses a challenge for their implementation on a
quantum simulator with boundedHilbert space [14]. To circumvent this difficulty, several proposals have
considered quantum linkmodels [46–49], where the gaugeHilbert space is truncated and gauge fields are
represented by spin-operators offinite dimensionality. Here, we follow an alternative approach and realize
Wilson’s formulation of lattice gauge theories [8], which takes the full infinite-dimensional Hilbert space of the
gauge degrees of freedom into account.

As explained in detail below, our quantum simulation scheme relies on analytically integrating out the gauge
fields [45], which is reminiscent of the analytical elimination of the fermionic fields inMonte Carlomethods
[10]. In this way, we obtain an effective description in terms of a pure spinmodel where the gauge fields no
longer appear explicitly but rather enter in the formof long-range interactionswith an exotic distance
dependence. Previously, this approach has been employed to aid analytical or numerical calculations [45,
50–53]. In contrast, we use this idea for quantum simulation, i.e. the realization of the Schwingermodel in its
encoded form in an actual physical system. A key difficulty in realizing such a simulation is the anisotropic form
of the long-range interactions, as illustrated infigure 2. Below, wewill showhow these interactions can be
implemented efficiently in a digital quantum simulator that features single-qubit operations and entangling
gates between arbitrary pairs of spins. These resources are naturally available in trapped-ion setups, where these
gate operations can be performedwith high accuracy [2, 3, 7, 43]. This platform therefore provides an ideal
match for the realization of the proposed scheme.

Asmentioned above, one of the key challenges for quantum simulations of gauge theories [14, 15, 54] is the
requirement that the dynamicsmust obey gauge invariance, i.e. theymust take place in the subspace
corresponding to states that are physically allowed in the simulatedmodel. This requirement translates into local
constraints that govern the interaction betweenmatter and gauge fields. In the case of quantum
electrodynamics, the constraints are imposed by theGauss law, which in the continuum limit is given by

r =E , where E is the electric field and ρ is the charge density. In quantum simulation proposals where both
matter and gaugefields are explicitly present, gauge invariance is typically imposed by suppressing processes that

7
In parameter regimes characterized by high occupancies of the photon degrees of freedom, semiclassical simulations have recently been

shown to provide accurate results [33], while tensor-networkmethods [14, 34–36]have been successfully applied for short-time
dynamics [37, 38].
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take the dynamics out of the allowed subspace [14], for example by enforcing energy penalties. Hence, the
resulting dynamics is only gauge invariant up to some energy scale. Our approach has the advantage that, by
construction, the dynamics takes place in the subspacewhere gauge invariance is automatically fulfilled. Instead
of introducing -N2 1quantum systems to simulateN particles together with the accompanying gaugefields
and restricting the dynamics to amuch smallerHilbert space, in this approachwe simulate the dynamics ofN
fermions using onlyN spins. The combination of themapping to a pure spinmodel and its realization bymeans
of a digital simulation scheme allows therefore for a very efficient use of resources, which renders the quantum
simulation of the Schwingermodel possible with present-day experimentalmeans.

Figure 1.Encoding of the lattice Schwingermodel. (a)Matter fields are represented by one-component fermion fields F̂n at lattice sites
n that couple via gauge variables L̂n (electricfields) and q̂n (vector potentials) defined on the links between sites. The interaction is
governed by the Schwinger latticeHamiltonian given by equation (1) in themain text. (b)Translation table: occupied even
(unoccupied odd) lattice sites translate to the presence of an electron (positron). Unoccupied even and occupied odd lattice sites
represent the vacuum. The translation is analogous aftermapping the fermion fields to spins. For each configuration, theGauss law
enforces a relation between the adjacent gauge fields as depicted in green. (c) For illustration, amatter configurationwith eight lattice
sites is shown in the lattice Schwingermodel (upper panel) and aftermapping the fermion fields F̂n to Pauli spin operators ŝn (lower
panel). Due to theGauss law, the gaugefields are completely determined for a givenmatter configuration and choice of background
field. (d)TheGauss law allows for the elimination of the gauge degrees of freedom. If the fermion fields aremapped to Pauli spin
operators, the systemHamiltonian becomes a pure spinmodel with long-range interactions, which correspond to theCoulomb
interaction between the simulated charged particles.

Figure 2.Eliminating the gauge fields in the Schwingermodel (as described in the text and infigure 1) results in long-range
interactions with asymmetric coupling.While every spin interacts with a constant strengthwith all spins to its left, the coupling to
spins on its right decreases linearly with distance. Panel (a) illustrates this asymmetric coupling forN=6, where the green lines
denote the coupling between two particles. Number, shade, and thickness of the lines indicate the associated interaction strength.
Panel (b) shows the full couplingmatrix for the case ofN spins.
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The remainder of this paper is organized as follows. Section 2 presents themodel under consideration and
discusses the details of our quantum simulation scheme.We explain the encoding strategy, and describe how the
resulting highly non-localHamiltonian can be realized efficiently in a digital quantum simulator. In section 3,
we illustrate the capabilities of our approach by showing how it can be used to simulate the spontaneous
generation of particle–antiparticle pairs out of the vacuumof the bare fermionic particles. Here, we explain how
the resulting decay of the vacuumcan bemonitored by studying the vacuumpersistence amplitude, how the
dynamics of the gauge degrees of freedom can be observed, and how the creation of entanglement during the
pair creation process can be studied. In section 4, we discuss concrete implementations with ions confined in a
linear Paul trap, as has recently been reported in [1]. In particular, we analyse the effects of imperfections and
discuss the scalability of the approach. In section 5, we discuss the challenges in taking the continuum limit of the
theory. Finally, in section 6, we present our conclusions and an outlook.

2.Digital quantum simulation of the Schwingermodel

In this section, we introduce themodel under consideration and explain how it can bemapped to a pure spin
Hamiltonianwith long-range interactions by eliminating the gaugefields exactly [45] (section 2.1). Afterwards,
we describe how the resulting spinmodel can be realized efficiently bymeans of a digital quantum simulation
scheme (section 2.2).

2.1.Mapping of the Schwingermodel to a spinHamiltonianwith long-range interactions
Weconsider the Schwingermodel, which describes the interaction between spinless fermions and antifermions,
whichwill be referred to as electrons and positrons, via electricfields in one spatial dimension. In the following,
we give an overview to thismodel in the continuumand on a lattice following the description in [45]. To this
end, we introduce the vector potential at position xwith temporal and spatial component ˆ ( )A x0 and ˆ ( )A x1 .
Throughout this paper, we use the temporal gauge =ˆ ( )A x 00 . In one spatial dimension, the electricfield has
only one component = -¶ˆ ( ) ˆ ( )E x A x0 1 , where ¶0 is the partial derivative with respect to time. ˆ ( )E x represents
the canonicalmomentum conjugate to ˆ ( )A x1 with d¢ = - - ¢[ ˆ ( ) ˆ ( )] ( )A x E x x x, i1 .Matter fields are represented

by two-component spinorfields Y = Y Y- +( ) ( ˆ ( ) ˆ ( ))†
x x x,e e

T . The SchwingerHamiltonian in the continuum is
given by

ò g= - Y ¶ + Y + Y Y +
⎡
⎣⎢

⎤
⎦⎥ˆ ¯ ( ) ( ˆ ( )) ( ) ¯ ( ) ( ) ˆ ( )H x x gA x x m x x E xd i i

1

2
,cont

1
1 1

2

where ¶1 is the partial derivative with respect to x,m is the fermionmass and gY º Y¯ † 0. In one spatial
dimension, theDiracmatrices g0 and g1 are given by the Pauli operators g s= ˆ z0 and g s= ˆi y1 . Using natural
units  = =c 1, the coupling constant = -g e is given by the charge e of the elementary particles. Thismodel
can be formulated on a lattice where points in space are separated by a distance a, while time is continuous. In the
following, we are using the so-calledKogut–SusskindHamiltonian formulation [29, 42, 55] of the lattice
Schwingermodel. In the compactU(1) lattice formulationwe discuss here, the continuous fields ˆ ( )A x1 and ˆ ( )E x
are replaced by aU(1) parallel transporter q = -ˆ ˆ ( )agA xn n1 and its conjugate =ˆ ˆ ( )L E xn g n

1 . The operators L̂n, q̂n

are defined on the links connecting lattice sites n and +n 1as shown infigure 1(a) and commute canonically
q d=[ˆ ˆ ]L, in m n m, . Particles are represented byKogut–Susskind fermions, with one-component fermion field

operators defined on each site n: F = Y -ˆ ˆ ( )a xn e n for even n and F = Y +ˆ ˆ ( )†
a xn e n for odd n. The unit cell of this

staggered lattice consists therefore of two sites and the presence of an electron (positron) is indicated by an
occupied even (unoccupied odd) site, as sketched infigure 1(b). Accordingly, the interaction ofmatter- and
gaugefields is described by the lattice SchwingerHamiltonian

å å å= - F F - + - F F +q

=

-

+
= =

-
ˆ [ ˆ ˆ ] ( ) ˆ ˆ ˆ ( )† ˆ †

H w m J Li e H.C. 1 , 1
n

N

n n
n

N
n

n n
n

N

nlat
1

1
i

1
1 1

1
2

n

whereN is the number of lattice sites andm is the fermionmass; =w
a

1

2
and =J

g a

2

2

, where a is the lattice
constant and g the fermion-light coupling constant. Using natural units  = =c 1, the parametersw, J,m, and g
have the dimension of inverse length, while a and t (time) have the dimension of length. Thefirst term in
equation (1) describes nearest-neighbour hopping and corresponds to the creation and annihilation of electron–
positron pairs8. The second and the third term represent the restmass and the electric field energy stored in the

8
This is illustrated in the upper half offigure 1(c). The fermionfields shown at lattice sites 5 and 6 represent empty space (vac, vac). A

hopping process that swaps the fermion fields of these two adjacent sites leads to configuration representing an electron–positron pair, as
shown at lattices sites 3 and 4.
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system, respectively. The resulting dynamics is constrained by theGauss law9. In the considered lattice
formulation, it takes the formof a set of local constraints as illustrated infigures 1(b), (c).More precisely,

physical states are eigenstates of the generators of theGauss law = - - F F + - --ˆ ˆ ˆ ˆ ˆ [ ( ) ]†
G L L 1 1n n n n n

n
1

1

2
.We

will be interested in the zero-charge subspace, where y ñ =ˆ ∣G 0n physical . Note that the electric field operators for
each link take integer eigenvalues =   ¼L 0, 1, 2,n .

In the following, we consider open boundary conditions and aim at realizing the Schwingermodel in a spin
system. This can be achieved by two transformations (see [1],Methods section). First, the fermionic field
operators F̂n can bemapped to Pauli spin operators by a Jordan–Wigner transformation [56],

 s sF =
<

-ˆ [ ˆ ] ˆi .n
l n

l
z

n

Second, the operators q̂n can be eliminated by a gauge transformation [45],

s s q-

<

- -
⎡
⎣⎢

⎤
⎦⎥ˆ ˆˆe ,n

l n
n

i l

where each spin operator s-ˆn ismultiplied by a phase that depends on all gaugefield operators q̂l to its left
( <l n). In this way, the Schwingermodel can be expressed in terms of spin operators ŝn representing thematter
fields and electric field operators L̂n,

å å ås s s¢ = + + - +
=

-
+

+
-

= =

-
ˆ [ ˆ ˆ ] ( ) ˆ ˆH w

m
J LH.C.

2
1 ,

n

N

n n
n

N
n

n
z

n

N

nlat
1

1

1
1 1

1
2

as shown infigure 1(c) (lower panel). In this formulation, theGauss law takes the form
s- = + --ˆ ˆ [ ˆ ( ) ]L L 1n n n

z n
1

1

2
. As illustrated infigure 1(c), the electric fields are in the considered case of open

boundary conditions completely determined for given choice of background field 0 and for a given spin
configuration that represents a certain fermion configuration.More specifically, theGauss law allows one to
express the electricfield operators in the form  s= + å + -=

ˆ ( ˆ ( ) )L 1n l
n

l
z l

0
1

2 1 , such that the gaugefields do no

longer appear explicitly in the description [45]. Instead, the electric field energy term = å ==
-ˆ ˆH J L

E
n
N

nlat 1
1 2

 så + å + -=
-

=
⎡⎣ ⎤⎦( ˆ ( ) )J 1n

N
l
n

l
z l

1
1

0
1

2 1

2
gives rise to (i) a long-range spin–spin interaction ĤZZ that corresponds to

theCoulomb interaction between the charged particles and (ii) local energy offsets that lead tomodified effective
fermionmasses. For simplicity, wewill assume a zero backgroundfield (the following results can be
straightforwardly generalized to arbitrary backgroundfields  ¹ 00 , which lead to local termsmodifying the
fermion on-site energies). The resultingHamiltonian can be cast in the form = + +ˆ ˆ ˆ ˆH H H HZZ ZS , with

å å s s= -
=

-

= +

-
ˆ ( ) ˆ ˆ ( )H

J
N l

2
, 2ZZ

n

N

l n

N

n
z

l
z

1

2

1

1

å s s= +
=

-
+

+
-ˆ [ ˆ ˆ ] ( )H w H.C. , 3

n

N

n n
1

1

1

å å ås s= - - - -
= =

-

=

ˆ ( ) ˆ [ ( ) ] ˆ ( )H
m J

2
1

4
1 1 . 4Z

n

N
n

n
z

n

N
n

l

n

l
z

1 1

1

1

As outlined in the introduction, themain challenge for realizing the Schwingermodel in its encoded form in an
actual physical system is the implementation of the long-range interactionHamiltonian ĤZZ , which features an
exotic asymmetric distance dependence (see figure 2). Note that we could have encoded the electric field
operators in the form  s= - å + -= +

ˆ ( ˆ ( ) )L 1n l n
N

l
z l

0
1

2 1 . This alternative encoding results in a long-range spin–
spin coupling of the same type, butwith reverse directionality (i.e. every spin interacts with a constant strength
with all spins to its right and the coupling to spins on its left decreases linearly with distance). Both descriptions
are equally valid. If closed boundary conditions are used instead of the open ones considered here, it is not
possible to eliminate all gaugefields. In this case, a free gauge degree of freedom remainswhich accounts for the
dynamicalflux in the loop.

2.2.Quantum simulation protocol
In the following, we describe a protocol that allows one to simulate the lattice Schwingermodel in a 1D spin
systemwith long-range interactions. The protocol consists of a digital quantum simulation schemewherewe
incorporated ideas put forward in [57]. Due to the complicated formof theHamiltonian ĤZZ given in
equation (2), a standard digital simulation approachwould requireN2 time steps, whereN is the number of

9
In the continuum ( a 0), theGauss law is given by g¶ = Y Y( ) ¯E x g1

0 . In three spatial dimensions, this takes the form r =E , where ρ
is the charge density.
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spins. In our protocol, the total number of time steps scales linearly withN and the realization of ĤZZ costs only
-N 2 time steps, which is optimal10. Our approach is quite general, and requires only single qubit operations

that can be applied to individual spins and one type of two-body interactions, s s= åˆ ˆ ˆH J n l n
a

l
a

0 0 , , where a can
correspond to any direction on the Bloch sphere and J0 is the coupling strength. In the following, wewill explain
the protocol for s s= åˆ ˆ ˆH J n l n

x
l
x

0 0 , . Adapting the scheme to ¹a x requires onlyminor and straightforward
modifications.

The quantum simulation protocol is based on a time-coarse graining, where the effective interaction given
by equations (2)–(4) is obtained in a time-averaged description, whilemaintaining local gauge invariance at any
stage. As illustrated infigure 3(a), the total simulation time tsim is divided into several timewindows of duration
T, in the spirit of the Trotter decomposition [28, 58]. During each of these timewindows, a full cycle of the
protocol that is described below is performed. Each cycle consists of three sections as shown infigure 3(b). In
sections 1 and 2, ĤZZ and Ĥ are simulated employing the spin–spin coupling Ĥ0. In section 3, only single
particle rotations are performed realizing ĤZ .

Section 1 is divided into -N 2 smaller timewindows of lengthDtI as shown infigure 3(c). For each of the
-N 2 timewindows, a subgroup of spins is decoupled from the interaction, while the remaining spins interact

according to Ĥ0. In the nth timewindowof section 1, ions 1 to +n 1participate in the interaction, such that the

Hamiltonian s s= å
+

=
+ˆ ˆ ˆ( )

H J
n

k l
n

k
x

l
x

0
1

0 , 1
1 is implemented. Since the realization of equation (2) requires

s sˆ ˆk
z

l
z-couplings, local single-particle rotations are added in the beginning and the end of section 1, rotating the x

spin component into the z direction. The resulting time-evolution operator for section 1,

=å ås s

=

-
- D - -p p⎛

⎝⎜
⎞
⎠⎟⨂ ( )ˆ ˆ ˆ ˆ( )

e e e e , 5
m

N
H t H Ti

2

1
i i ij j

y m
I j j

y
ZZ4 0 4

realizes the desired ĤZZ for one time stepT, with strength = DJ J2 t

T 0
I . For a single time step, this is exact. Trotter

errors will be discussed in section 4.2, wherewe address imperfections of the scheme.

Figure 3.Quantum simulation protocol. (a)The time evolution of a spin systemunder the SchwingerHamiltonian ĤS is simulated by
introducing discrete time steps of lengthT. (b)Each timewindowof lengthT is divided into three sections that correspond to the three
parts of the simulatedHamiltonian ĤZZ , Ĥ and ĤZ , as defined in equations (2)–(4). The relative length of the three sections is not
depicted to scale. (c) Illustration of the simulation of ĤZZ as given in equation (2). The first time segment (of lengthTI) is divided into

-N 2 elementary timewindows of lengthDtI .Within the nth timewindow, the spins interact according to theHamiltonian

s s= å
+

=
+ˆ ˆ ˆ( )

H J
n

k l
n

k
x

l
x

0
1

0 , 1
1 , which couples the spins 1 to +n 1 (while spins +n 2 toN are decoupled). Tomap ŝx to ŝz , local rotations

= såp ˆU ey
i i i

y
4 are added at the beginning and end of this segment. (d) Illustration of the simulation of Ĥ as given in equation (3). The

time segment -T TII I is divided into -N 1 steps of lengthDtII . During each elementary timewindow anearest-neighbour flip-flop
interaction is realized between two selected spins, while the other spins are decoupled. (e)During each timewindow theflip-flop
interaction is realized in a four step sequence as described in themain text.

10
The long-range spin–spin interaction given in equation (2) is fully determined by the ´N N couplingmatrix shown infigure 2, which has

a rank of -N 2 and therefore -N 2 linearly independent components. This implies that the proposed quantum simulation scheme, using
only -N 2 independent gates, is optimal.
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In section 2, the part of the SchwingerHamiltonian involving nearest-neighbour interactions Ĥ is realized.
To this end, the underlying interaction Ĥ0, needs to bemodified not only in range but also regarding the type of
couplings. This is accomplished by dividing section 2 into -N 1elementary time slots of lengthDtII (see
figure 3(d)). Each of these time slots is used for inducing the required type of interaction between a specific pair
of neighbouring atoms. This can be done by decoupling all but the selected pair of atoms from the evolution
under Ĥ0. The selected pair of atoms undergoes a sequence of gate operations that transforms the
s sˆ ˆn

x
l
x-coupling into a s s s s++ - - +( ˆ ˆ ˆ ˆ )n l n l -interaction and consists of four steps (see figure 3(e)): (i) a single qubit

operation on the two selected spins n and +n 1, = s s+p
+(ˆ ˆ )U ei n

z
n
z

4 1 (ii) an evolution of the qubits n and +n 1
under theHamiltonian Ĥ0 during a timeDt 2II , - Dˆe H ti 2II0 (iii) another single qubit operation †U andfinally

(iv) another two qubit gate operation - Dˆe H ti 2II0 . These four steps result in a time evolutionwith

=- - - +D D D
· · ·ˆ † ˆ ( ˆ ˆ )†

U Ue e e .H H H U H Ui i itII tII tII
0 2 0 2 0 0 2

Note that this equation is exact. The time evolution operator associatedwith the described sequence of gate

operations is given by - D
+ˆ ( )

e H ti II
n n

II
, 1

with

s s= + = +
+ +

+
-ˆ ( ˆ ˆ ) ( ˆ ˆ )( ) †H H U H U J

1

2
H.C. .II

n n
n n

, 1
0 0 0 1

Repeating these four steps for sites = -n N1 ... 1yields, as long as D - ( )J t N 1 1II0 (see section 4.2), the
desired evolution operator = å ==

- +
ˆ ˆ ˆ( )

H H HII n
N

II
n n

1
1 , 1

, with = Dw Jt

T 0
II . The relative strength of the nearest-

neighbourHamiltonian Ĥ and the s sˆ ˆn
z

l
z-type couplings ĤZZ can be adjusted by tuning the ratio of the

elementary timewindowsD Dt tII I .
In section 3, the single qubit terms of the type Ĥz given in equation (4) are implemented. ThisHamiltonian is

realized in a single timewindowof lengthDtIII . All spins are acted upon simultaneously, but each one
experiences a different coupling strength. Sincewe assume that single qubit operations can be performed on
much faster time scales than gates operating onmultiple spins, we useD D Dt t t,III II I . Together, the
operations in the time sections 1, 2 and 3 approximately realize the time-evolution operator of the Schwinger

model for one time step, - ˆe H Ti S . Trotter errors due to the finite-time coarse-grainingwill be discussed below in
section 4, wherewe address imperfections of the scheme.

3.Dynamics of particle production

The proposed quantum simulation scheme allows for the experimental study of awide range of fundamental
properties inU(1)-Wilson gauge theories that are of current interest. For example, strong efforts are underway
at high-intensity laser facilities such as ELI andXCELS to observe a cascade of particle–antiparticle pairs
generated out of the vacuum subject to extreme electric fields [11, 12], and several theoretical proposals for the
quantum simulation of particle production have been put forward in recent years [14, 15, 59–61]. The
preparation of the true vacuum (the eigenstate of the SchwingerHamiltonian ĤS forfinite values of J w m, , ) is
challenging for current experiments, as discussed in section 5 below. Therefore, we demonstrate the capabilities
of our scheme by studying the coherent real-time dynamics of the creation of particle–antiparticle pairs out of
the bare vacuum (the eigenstate of the SchwingerHamiltonian for  ¥m ) following a quantumquench, i.e.,
following a rapid change from = ¥m w to afinite value.

In the context of particle–antiparticle production, our approach provides the potential to study various
interesting quantities in quantum simulation experiments.We consider here three key observables, the vacuum
persistence amplitude of the unstable vacuum (section 3.1), the electric field energy density (section 3.2), and the
entanglement generated during pair creation (section 3.3).While the study of the vacuumpersistence amplitude
and the electric field energy density requires only local addressability (which is already needed for implementing
the simulation protocol), ameasurement of the entanglement entropy ismore ambitious due to the increased
amount of resources required for reconstructing densitymatrices using, e.g., quantum state tomography. This
section addresses the phenomenology for the perfect implementation of the proposed simulation scheme. A
detailed analysis of the influence of errors and imperfections will be given in section 4.

3.1.Decay of the unstable vacuum
Since vacuumfluctuations promote the creation of particle–antiparticle pairs, the bare vacuum ñ∣vac (i.e. the
state where particles are absent) is unstable. The particle number density n ( )t created out of the bare vacuum is
measured by the observable
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ån = á - F F ñ
=

( ) ( ) ˆ ( ) ˆ ( )†
t

N
t t

1
1

n

N
n

n n
1

with á ñ = á ñ∣ ∣... vac ... vac denoting the averagewith respect to the initial vacuum state. After transforming the
fermonic fields to spin operators by a Jordan–Wigner transformation (see section 2.1), the particle number
density is given by n s= å á - + ñ=( ) ( ) ˆ ( )t t1 1

N n
N n

n
z1

2 1 and can be determined through localmagnetization
measurements (seefigure 4(a)). Infigure 4(b), the quantum real-time dynamics of n ( )t is shown, illustrating the
instability of the vacuum. Initially, particles are produced quickly. After a sufficiently large particle density has
been generated, particle–antiparticle recombination becomes favoured, inducing a decrease of n ( )t . This
nonequilibrium interplay of regimeswith either dominating production or recombination continues over time,
leading to an oscillatory behaviour of n ( )t with a slowly decaying envelope. Asymptotically, the system reaches a
steady state with a balance between particle production and recombination. As shown in figure 4(a), increasing
particlemasses lead to a decrease in the particle production because of the increasing energy costs for pair
creation. Similarly, with larger values of J/w, the higher cost of generating afield string between electrons and
positrons reduces the density of generated pairs, see figure 5.

An important quantity in the context of dynamics in the Schwingermodel is the vacuumpersistence
amplitude [30]

 = á ñ-( ) ∣ ∣ˆt vac e vac ,H ti S

whichmeasures the deviation from the initial state during the simulated dynamics and quantifies therefore the
aforementioned decay of the unstable vacuum. In the continuum limit it has been shown that the decay of the
vacuum is directly related to the particle production n l=( ) ( )t t with l = - -( ) (∣ ( )∣ )t N tlog1 2 [30]. In
figure 5, we show a comparison between l ( )t and n ( )t for different parameters.While on the lattice their one-
to-one relation n l=( ) ( )t t is broken, we find numerically that the similarity between l ( )t and n ( )t
nevertheless remains clearly visible. Vacuumpersistence amplitudes are not only important for spontaneous
pair creation. They appear under different names in a variety of contexts in quantummany-body theory and are
therefore also of interest in other types of quantum simulations (for example, in the theory of quantum chaos
[62] the associated probability  =( ) ∣ ( )∣t t 2 is also known as the Loschmidt echo and quantifies the stability of
quantummotion [63]). It plays also a central role in dynamical quantumphase transitions far from equilibrium
[64, 65]. In quantum thermodynamics, the Fourier transformof ( )t is related towork distribution functions
[66], which are the basic objects appearing in nonequilibrium fluctuation theorems [67] (such as the Jarzynski
equality [68]).

Figure 4.Numerical simulation of particle production out of the bare vacuum forN=10. (a)Pair creation in the encoded Schwinger
model. The left spin configuration corresponds to the bare vacuum state. The right configuration displays a state with one particle–
antiparticle pair. (b), (c) Instability of the bare vacuum: (b) particle number density n ( )t and (c) entanglement entropy ( )S t , as defined
in equation (7), for =J w 1 and different values ofm/w, where J andw quantify the electricfield energy and the rate at which
particle–antiparticle pairs are produced, andm is the fermionmass, see equation (1). (b)After a fast transient pair creation regime, the
increased particle density favours particle–antiparticle recombination inducing a decrease of n ( )t . This nonequilibrium interplay of
regimeswith either dominating production or recombination continues over time and leads to an oscillatory behaviour of n ( )t with a
slowly decaying envelope. (c)The entanglement entropy S(t) quantifies the entanglement between the left and the right half of the
system, generated by the creation of particle–antiparticle pairs that are distributed across the two halves. An increasing particlemassm
suppresses the generation of entanglement.
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3.2. Electricfield dynamics
The encoding of the lattice Schwingermodel used in this work provides an effective theory that involves only
matterfields after integrating out the gauge degrees of freedom (see section 2.1). However, it is nevertheless
possible to theoretically and also experimentally access the dynamics of the gaugefields. Specifically, due to
Gauss’ law, the electric field operators L̂n can be expressed in terms of the spin operators used in the encoding,

å s= + -
=

ˆ [ ˆ ( ) ] ( )L
1

2
1 , 6n

l

n

l
z l

1

wherewe assumed a vanishing backgroundfield  = 00 . Bymeasuring the localmagnetizations ŝl
z , one obtains

full spatial and temporal access to the gauge degrees of freedom.
Infigure 6we show the dynamics of the local electric fields = á ñ( ) ˆ ( )E t L tn n for our protocol, starting from

the initial state ñ∣vac and assuming a vanishing background field, i.e. = =( )E t 0 0n . During the course of the

time evolution under theHamiltonian ĤS, the creation of particle–antiparticle pairs is accompanied by the
buildup of local electric fields to satisfy Gauss’ law. As explained in the previous section, the dynamics alternates
between regimes of particle generation and recombination, which results in an oscillatory behaviour of both, the
total particle number density n ( )t and the local electric fieldsEn(t).

Figure 5.Dynamics of particle production in comparison to the vacuumpersistence amplitude. The evolution of the particle number
density n ( )t and the rate function l ( )t of the vacuumpersistence amplitude, for fermionmass =m w 1 and two values of the
electric field, (a) =J w 0 and (b) =J w 1. As J/w is increased, the cost for separating particle–antiparticle pairs rises, resulting in
stronger recombination dynamics. This leads to smaller absolute values of n ( )t and larger oscillations. On the lattice, the one-to-one
correspondence between ν (solid line) andλ (dashed), valid in the continuum, is qualitatively retained, even for comparatively small
system sizes. The included results for n ( )t for smaller system sizes (squares:N = 12, circles:N = 18) visualize that the dynamics
quickly converges with increasingN.

Figure 6.Time evolution of the local electricfields = á ñ( ) ˆ ( )E t L tn n located on the links = ¼ -n N1, , 1 (seefigure 1) for a systemof
N=26 lattice sites and = =w m J m 1. The parameters J andw quantify the electric field energy and the rate at which particle–
antiparticle pairs are produced, andm is the fermionmass, see equation (1).
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The energy cost for the creation of a particle–antiparticle pairs is not only due to the respective restmasses
but also due to the associated change in the electric-field contribution Eg to the total energy. The respective
energy density  = -( ) ( )t N E tg g

1 is given by

 å= á ñ
=

-
ˆ ( )g a

N
L t

2
.g

n

N

n

2

1

1
2

Figure 7 shows the time evolution of  ( )tg for the same nonequilibriumprotocol considered infigure 6. For
comparison, the energy density contribution associatedwith the restmasses of the fermions,
 s= å - á ñ=( ) ( ) ( ) ˆ ( )t m N t2 1m n

N l
n
z

1 is also included. The plots show that particle–antiparticle creation is always
accompanied by an increase in electric field energy. Since the total energy is conserved, this implies that during
the pair creation process, the kinetic energy density is continuously converted into g and m. This changes in
the phases of recombination, where particle–antiparticle pairs annihilate each other andwhere the released
electric field and restmass energy is analogously converted into an enhanced kinetic energy for the remaining
particles.

The electric field energy ( )E tg can also be determined from the experimental data taken in [1]. According to
equation (6) and based on themeasured spin correlations for thematterfields, we show infigure 8 its dynamics
from the experimental data. The experimentalmethods and postselection procedure used are described in detail
in [1]. The discrepancywith respect to the ideal time evolution stems fromboth, discretization errors and
experimental imperfections, as shown infigure 2 in [1] (which is based on the same experimental data set as the
results shown infigure 8).We remark that the electric fields energies on the individual links and any other
correlation function that can be recast in terms of the electric field operators L̂n are also experimentally
accessible.

3.3. Entanglement dynamics in spontaneous particle production
The entanglement entropy [69] is an important quantity for the theoretical characterization of quantummany-
body dynamics. In the following, we study the real-time entanglement production during pair creation.We
focus on the entanglement between two contiguous blocks in the spin system,which is equivalent to the
entanglement between the respective blocks in the original fermionic description including the gauge degrees of
freedom (see appendix for details). Indeed, when the system is encoded, theHilbert space takes a factorized form
(while in the initial formulation, it is not factorized due to the presence ofGauss’s law); this form recovers the
construction proposed in [41]. Therefore, it is possible tomeasure the entanglement in the originalmodel
directly in a pure spin system,which has the advantage that the partition into subsystems is always gauge
invariant thereby avoiding knowndifficulties with tracing out parts of the system [41].

Figure 7.Time evolution of the electricfield energy density  ( )tg (top) for = =m w J w 1 and different system sizesN. Already for
amoderate system size ofN=26,finite size effects are very weak. For comparison, the energy density stored in the fermion rest
masses  ( )tm is shown (bottom) forN=26, illustrating the connection between particle–antiparticle creation and electric field
production.
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In the following, we consider the real-time dynamics of the half chain entanglement entropy,

r r= -( ) { ( ) [ ( )]} ( )S t t ttr log 7A A A

with r r= { ( )}ttrA B denoting the reduced densitymatrix of the first N 2 lattice sites, obtained by tracing out
the remaining systemB. S(t) quantifies the entanglement between the left and the right half of the system,which
is generated by the creation of particle–antiparticle pairs that are distributed across the two parts. As already
shown infigure 4(c), the generation of entanglement decreases with increasingmassm, since particle creation
becomes energetically costly for a large fermionmass. The dependence of the entanglement production in the
electric field energy J is particularly interesting. The effective coupling between particles and antiparticles,
mediated by the gauge bosons, increases with their relative spacing such that it becomes energetically
unfavourable to separate particle–antiparticle pairs over large distances. This constrains the dynamics by
reducing the number of particle–antiparticle pairs that can be shared between the left and the right half of the
system. Accordingly, this leads to a reduction of entanglement for increasing J. Infigure 9, we show the time
evolution of the half chain entanglement entropy S(t) for two different electric coupling strengths =J w 0 and

=J w 0.2 for varying system sizes. For the case of free particles, i.e., without coupling to the gauge fields (J= 0),
the entanglement entropy exhibits a linear growth in time, characteristic for free fermionic theories. In the
thermodynamic limit  ¥N , the linear growthwould continue for all times, but forfinite system sizes

< ¥N it is cut off on a time scale µwt N 2. If ¹J 0, the entanglement growth follows initially approximately
the free case up to a time scale = -t JJ

1, beyondwhich the entanglement production is substantially slowed
down. As the effective potential experienced by a particle–antiparticle pair increases linearly in the distance for
nonzero J, the electric field suppresses the separation of spontaneously generated pairs over large distances. This,
in consequence, reduces the amount of entanglement that can be produced. As these examples show, the
quantum simulation of the Schwingermodel allows for the observation of an intricate interplay between
different parameter regimes, which can be studied in quantities not accessible to conventional experiments.

4. Imperfections of the scheme and implementation in trapped ions

In the following, we describe how the proposed quantum simulation protocol can be implemented in a systemof
trapped ions (see section 4.1) and discuss the effects of imperfections. There are two types of errors: (i) those that
are inherent to the scheme and (ii) those that are due to experimental imperfections. The former, discussed in
section 4.2, arise since our digital quantum simulation protocol realizes the desired dynamics only in a time-
averagedmanner, which leads to a discretization error [28, 58, 70, 71] also known as Trotter error. The latter
depend on the concrete physical implementation. In sections 4.3 and 4.4, we discuss the sensitivity of the
simulations to experimental imperfections by considering the trapped-ion implementation that has been
realized in [1].We identify dominant errors and show that the phenomena of interest are robust against themain
sources of imperfections that generically occur in this type of setup.

Figure 8.Time evolution of the electricfield energy density  ( )tg determined from the experimental data in [1] (red dots) forN=4
spins and =m w0.5 , J=w. For comparison, we also show the ideal continuous time evolution (green line). The experimental data
have been postselected as described in [1].
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4.1. Implementation of the simulation schemeusing trapped ions
In trapped-ion setups, spin degrees of freedomare obtained by restricting the dynamics to two (meta-) stable
Zeeman levels of the internal electronic level structure of the ions [2, 3]. The use of focused laser beams acting on
these levels allows one to realize single-qubit operations by inducing individually addressedAC-Stark shifts
( s~ˆ ˆH

n
n
z

AC ) andRabiflops ( q s q s~ +q
ˆ ( ) ˆ ( ) ˆ( )H cos sin

n
n
x

n
y

RF ). Spin–spin interactions are realized using a global
laserfield coupling the internal levels to external vibrational degrees of freedom.Here, we assume an
implementation based on the so-calledMølmer–Sørensen interaction [4–7] that ismediated by themotional
centre ofmassmode [2] and provides an infinite range, all-to-all two-body coupling s s= åˆ ˆ ˆH J n l n

x
l
x

0 0 , , as
assumed in section 2.2. This effective description of the spin–spin interaction neglects themotional degrees of
freedomof the chain of ions, which is valid if the spin-motion coupling after a gate operation is negligible and the
duration of the interaction ismuch larger than the period of the harmonicmotion of the ions in the trap. This
condition is well fulfilled in the considered experimental setting [2, 3], as the period of the harmonicmotion is
typically less than m1 s and the gate duration is longer than m50 s.

Our simulation protocol requires the decoupling of individual spins from the infinite-range coupling
s s= å >

ˆ ˆ ˆH J n l n
x

l
x

0 0 (see figures 3(c), (d)), which can be achieved in different ways. For example, onemay
strongly detune individual ions from the laser fields that induce theMølmer–Sørensen interaction by applying
strong addressed AC Stark shifts [72, 73]. Alternatively, one can split the ion crystal intomultiple chains
during a single experiment, such that only the ions that take part in the long-range interaction form a
connected crystal that interacts with the laser light. This flexible scheme requires the use ofmicrometer-scale
ion traps which increases the experimental complexity considerably [74, 75]. An alternative that can be
implemented in amacroscopic trap, andwhich has been employed in [1], consists in the transfer of the
population of the idling ions to additional electronic substates that are off-resonant with respect to the laser
light inducing the gate operations [3]. This decoupling (recoupling) procedure will be referred to as hiding
(unhiding) below.

4.2.Discretization errors
The digital quantum simulation scheme introduced in section 2.2, allows one to realize the time evolution under
theHamiltonian ĤS bymeans of a stroboscopic sequence, which consists of the cyclic application of
Hamiltonians that can be experimentally realized ¼ˆ ˆ ˆH H H, , n1 2 (see figure 3). The Trotter error, i.e. the
difference between the desired time evolution = - ˆU e H t

S
i S and the evolution realized by the stroboscopic

sequence = - -( )ˆ ˆU e ... eH t n H t n n
sim

i i n1 is bounded by [28]

å- = +[ ˆ ˆ ]U U
t

n
H H

2
, ,

i j
i jS sim

2

,

Figure 9.Time evolution of the half chain entanglement entropy S(t) for different system sizes = { }N 16, 18, 20, 22, 24 and for two
different electric coupling strengths, (a) =J w 0 and (b) =J w 0.2 (notice the different y-axis scalings for both panels), with the
fermionmass set to =m w 1. (a)At vanishing field energies, particles spread ballistically, leading to a linear increase of entanglement
over time. This increase is cut off by finite system sizes on a time scale µwt N 2. (b)The energy cost for generating particle–
antiparticle pairs, as well as for separating them, increases with J/w, thus suppressing the amount of entanglement that is generated.
The ballistic linear increase can only bee seen over time scales on the order of = -t JJ

1.
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where ò represents higher-order terms11. Hence, these errors are controllable and the accuracy of the Trotter
decomposition can, in principle, be increased to any desired precision by increasing the number of time steps n
for a given total time t. However, the implementation of the proposed scheme in trapped ions poses limits on the
minimum length of the step size that can be used. In the presence of decoherence, this leads to practical
limitations on the accuracywithwhich the dynamics can be realized.More specifically, in order to suppress
undesired spin-motion coupling terms during the appliedMølmer–Sørensen gates (see section 4.1), we require a
minimal lengthDtmin of the basic timewindows that are used, such that w D t 1trap min . In the following, we
consider typical experimental values, where wtrap takes values on the order ofMHz [2, 3] and evaluate the Trotter
error numerically for wD D -t t,I II trap

1 (comparefigures 3(c), (d)). Local operations can be performed about an
order ofmagnitude faster than entangling operations [3], and thus, one-qubit rotations are assumed to be
instantaneous in ourmodel. Asfigures 10 and 11 demonstrate, the Trotter error can bemade sufficiently small to
obtain a good resolution of the relevant features (see also experimental results in [1]). Thus, this error intrinsic to
digital quantum simulation is well controlled and not a limiting factor.

Figure 10. Simulation of spontaneous pair creation for finite Trotter step sizeT (seefigure 3(a)). Our numerical simulation shows the
evolution of the particle number density n ( )t in panel (a) and the half chain entropy S(t) in panel (b) for = =m J w andN=10, with
step sizes =T w0.75 (circles) =T w1.5 (crosses), =T w3 (squares) and for the ideal case (dark green solid line). As the step size
decreases, the results converge fast towards the ideal case. The evolution timewt= 5 corresponds to t=16 ms if aMølmer–Sørensen
coupling strength =J 40 kHz is assumed.

Figure 11. Simulation of spontaneous pair creation including experimental imperfections. Panel (a) shows the numerically calculated
evolution of the particle number density n ( )t forN=10 as a function of the dimensionless timewt for = =m J w (see equations (2)–
(4)) for a Trotter step size =T w1.3 . Circles correspond to results including fluctuations of theMømer–Sørensen coupling strength
J0 ofmagnitude d Î -[ ]J J0.05, 0.050 0 and collective dephasing of order dw Î -[ ]J0.025, 0.025 0 as explained in section 4.3. Crosses
represent results that take the different dephasing strength of ions that are transferred to hiding levels into account (see section 4.3).
We consider here the implementation in [1] and assume a dephasing strength of dw dw¢ = 1.5 for ‘hidden’ ions. Panel (b) shows the
rate function l ( )t as is defined in section 3.1 for the same set of parameters.

11
 = å =

¥ ( )E kk 3 , where ∣∣ ( )∣∣ ∣∣ ∣∣ !E k n Ht n kk
max max , and ∣∣ ∣∣O max is themaximumexpectation value of the operatorO (see [28]).
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4.3.Main experimental errors in trapped-ion implementations
In this subsection, we discuss generic errors affecting the gatefidelity of the digital quantum simulation in
trapped-ion systems. In the considered type of experiment [2, 3], the twomain error sources impairing the
required gate operations are (i)fluctuating coupling strengths of theMølmer–Sørensen interaction and (ii)
collective dephasing (see below). Thefirst imperfection, fluctuations in the coupling strength d= +( )J J J0 , is
mainly due to intensity and beampointing fluctuations of the laser beam, resulting in slightlymodified
interactions d s s= + åˆ ( ) ˆ ˆH J J n l n

x
l
x

0 0 , . The laser intensity fluctuations are slow on the time scale of a single
simulation experiment, such that dJ can be considered to be constant within one experimental run.
Consequently, the experiment effectively realizes an ensemble of coherentHamiltonian evolutionswith
fluctuating interaction strength. The resulting expectation values are averages over trajectories corresponding to
different values of dJ .

The secondmajor source of imperfections, dephasing between the twoZeeman levels that encode the spin
states, is induced by fluctuatingmagnetic fields. Since the ions are typically onlymicrometers apart, all spins
experience approximately the samefield fluctuations, and the effect can be described in terms ofHamiltonian
perturbations of the type dw s= åˆ ˆH n n

z
deph with randomly varying coefficients dw. Again, on the time scale of a

single experiment, dw can be assumed to be time-independent such that we can take these experimental
imperfections into account by averaging over an ensemble of trajectories for different values of dw. It is
interesting to note that the considered ideal time evolutions (starting from the bare vacuum state shown in
figure 4(a)) take place in the zeromagnetization subspace, which forms a decoherence-free-subspace with
respect to collective dephasing12.

We estimate the influence of these generic imperfections by performing a numerical simulation of the
expected time evolution for the particle number density n ( )t and the rate function l ( )t . Throughout this article
we use numerically exact simulations to study the dynamics in the Schwingermodel. For this purpose we use
exact diagonalization on the basis of a Lanczos algorithmwith full reorthogonalization [76]. To include the effect
offluctuating coupling strengths and dephasing, we draw dJ and dw randomly fromuniformdistributions.
Figure 11 shows calculated data for a chain of ten ionswith = =J w m w 1. The solid line corresponds to the
ideal case, while the circles represent the expected results taking the discussed experimental imperfections into
account. Here, we considered fluctuations of theMølmer–Sørensen coupling rate of 5%
(d Î - +[ ]J J0.05, 0.05 0) and a collective dephasing rate of 2.5% (dw Î - +[ ]J0.025, 0.025 0). Assuming a
Mølmer–Sørensen coupling rate of =J 40 kHz, the circles correspond to Trotter steps where the elementary
timewindowT (see figure 3) is 0.325 ms long. These fluctuations lead to a damping of the amplitude of the
oscillations, though the frequency is retained. As these results show, the qualitative agreement including these
errors remains satisfactory through realistic evolution times.

Additionally, if part of the qubit register is in the hiding states during amany-body interaction (see
section 4.1), different phase shifts should be taken into account for ions that participate in theMølmer–Sørensen
interaction and for those that are transferred to hiding levels. Figure 11 contains a numerical simulation
including this effect (crosses), wherewe consider the internal levels used in [1]. These results have been obtained
by adding terms dw s dw s= å + ¢åˆ ˆ ˆH n n

z
l l

z
deph for each timewindow,where the first (second) sum includes

ions that occupy regular (hiding) states. This leads only tominor corrections, as we show infigure 11. The error
model above captures the dominating sources of imperfections in the considered setting. The effect of imperfect
local operations on non-hidden qubits is negligible compared to the errors discussed above, since they can be
performedwith amuch higher accuracy thanmulti-qubit entangling gate operations. In particular, if only a
finite set of local operations is required, fidelities larger than =F 0.99local can be reached [3].

4.4. Error detection techniques
The use of hiding/unhiding techniques (see section 4.1) generates another source of imperfections in the
simulated time evolution. If the applied hiding pulses fail to transfer a quantum state from the computational
basis states to the corresponding hiding states13 ñ  ñ∣ ∣h , ñ  ñ∣ ∣h , or unhiding pulses fail to transfer the
quantum states back, themany-body operationwill not act on the ions as intended and thus inducesmany-body
errors that are difficult to correct for. However, as we describe in the following, postselection techniques can be
employed to detect andfilter out this type of errorwithout affecting the desired unitary evolution. Such a
postselection scheme can for example be realized as follows. For each step in the protocol that involves a

12
In the absence of spinflips or undesired state transfers, the quantum states after a full time step are therefore invariant under this type of

noise. However, as explained in section 2.2, the active qubits undergo a rotationUy (seefigure 3(c)) that changes the reference frame, such
that the noise after this rotation is effectively given by dw s= åˆ ˆ†U H Uy y n n

x
deph , an interaction that induces spinflips.

13
If the pulse areaof a pulse deviates from the target value, an imperfect state transfer is performed d dñ  + ñ + + ñp p

∣ ( )∣ ( )∣hcos sin
2 2

.

If the qubit ismeasured after a series of imperfect pules, the resulting erroneous state can be associatedwith a failure probability d= ( )p sin 2 for

eachpulse.
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Mølmer–Sørensen gate acting on a subset of ions, suitable hiding operations are performed, followed by the
action of the quantumgate, and the corresponding unhiding operations. Following these steps, ameasurement
of the population residing in the hiding levels is performed. If population is detected in the hiding levels, the
experimental run is discarded. This way, only events that involve a failure of both the hiding and the unhiding
pulse on a single ion (in a single hiding-unhiding step) remain undetected, which, however is strongly
suppressed14. Apart from a controllable residual error that can be suppressed to any desired accuracy,
decoupling errors lead therefore only to a reduction of the rate at which simulation data can be acquired, but do
not impair the desired unitary evolution.

In [1], an alternative postselection scheme has been applied to ensure that the final state fulfills Gauss’ law.
This involvesmeasurements of the totalmagnetization s= åˆ ˆM n n

z at the end of simulated time evolution. Due

to charge conservation in the Schwingermodel, M̂ is a conserved quantity under the dynamics induced by ĤS.
The simulations performed in [1] have been carried out in the zero-charge subspace, starting from the initial
state     ñ∣ ... . Using the employed decoupling andmeasurement techniques (see [1, 3]), single hiding/
unhiding errors can lead tomeasurement results that correspond to a nonzeromagnetization of the spin system.
This subset of errors could therefore be detected and filtered out by postselection.

We remark that digital quantum simulation schemes allowone in principle to use quantum error correction
schemes to ensure that the desired sequence of gates is carried outwith highfidelity. The postselection
techniques discussed here provide an alternative route that is easier to realize experimentally and allows one to
filter out the dominant errors.

5. Continuum limit

In the previous sections, we have shownhow to simulate the Schwingermodel within its lattice formulation. As
wewill discuss in the following, the ultimate goal, the extrapolation from the lattice to the original continuum
field theory, can in principle be reached, though it remains a challenging prospect. The continuum limit a 0,
where a is the lattice spacing, involves a rescaling [45] of the couplings in the lattice SchwingerHamiltonian Ĥlat

given in equation (1),

= = ( )w
a

J
g

a
1

2
,

2
, 8

2

while the restmassm is independent of a. To correctly reproduce the original Schwingermodel, the
thermodynamic limit  ¥N has to be taken before taking the limit a 0. Practically, both for theoretical or
experimental data, this specific order of limits can be implemented by firstfixing a lattice constant a and then
extrapolating the data to the thermodynamic limit. In this way, data can be obtained successively for decreasing
lattice spacings a, which thenfinallymay be extrapolated to a 0.

Taking the continuum limit requires an initial state that correctly reproduces the long-wavelength
properties of the continuum theory.While the bare vacuum state chosen in the previous sections is valuable to
study the dynamics of the lattice Schwingermodel, it exhibits a spatialmodulation at the level of the lattice
spacing far beyond the long-wavelength limit. In the following, wewill therefore choose a different initial state
that lies in the long-wavelength sectorwhile still being accessible experimentally.More specifically, we start from
the ground state for the parameters >m 0, >w 0 and g=0, and then quench to >g m 0. The systemmay be
initialized in the desired state via adiabatic state preparation. For that purpose the system is initialized in aNéel-
type state     ñ∣ ... , which can be prepared easily as well as with high fidelity [3]. It lies in the physical charge-
neutral sector and is also the absolute ground state of theHamiltonian s= å -ˆ ( ) ( ) ˆH m 2 1m n

i
n
z. Afterwards, the

Hamiltonian is adiabatically transformed from Ĥm to s= + å -ˆ ˆ ( ) ( ) ˆH H m 2 1n
i

n
z by engineering a time-

dependentHamiltonian = + ˆ ( ) ˆ ( ) ˆH t H f t Hm with =( )f 0 0 and ¢ =( )f t 1where ¢t denotes the time of the
end of the process. According to the adiabatic theorem [77], the state always remains in the ground state
manifold of the physical sector of the instantaneousHamiltonian ˆ ( )H t for a sufficiently slow transformation.
Note that thismay not be the absolute ground state, since, e.g., charge conservation separates ˆ ( )H t into un-
connected blocks. States belonging to different blocks display true level crossings, such that transitions between
blocks do not occur. The error in following the adiabatic passage ismainly set by theminimal gapwithin one
symmetry sector of theHamiltonian ˆ ( )H t encountered during the sweep. Importantly, the considered
transformationwill not encounter a quantumphase transition and therefore theminimal gapwithin one
symmetry sector will not scale downwith the system size (up to potential finite-size corrections). As a
consequence, the considered adiabatic state preparation is very efficient. Instead of conventional adiabatic state
preparation, which is based on a continuous deformation of theHamiltonian over time, this procedure can also

14
The probability for such an event is given by =P p N1

2 for each hiding-unhiding step, where p is the probability for a hiding or unhiding
pulse to fail, assumed to be small. The probability for such an undetectable error to occur during a timewindowT scales therefore with N p3 2.
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be realized in a digital quantum simulation device, as demonstrated recently with superconducting qubits [78].
When choosing the digital approach also for the preparation of the initial state, the overall runtime of the
quantum simulation, i.e., the total number of gate operations, increases respectively. Fortunately, the number of
gate operations per Trotter step for the preparation isN, which is smaller than for the digital simulation for the
full Schwingermodel which is -N2 2.

In the following, wewill consider the continuum limit exemplarily for the vacuumpersistence probability
 =( ) ∣ ( )∣t t 2 with  y y= á ñ-( ) ∣ ∣ˆt e H t

0
i

0
s . In the limit a 0, the rate function

k = -( ) [ ( )] ( )t
L

t
1

log 9

has awell-defined limit, where L= aN is the total length of the system. Infigure 12, we show the time evolution
of k( )t that is induced by switching-on of the electric field coupling for different system sizes. The chosen
parameters correspond to =m g 1and =m w 1. Asmentioned before, establishing the continuum limit
requires a successive extrapolation to the thermodynamic limit for decreasing values of the lattice spacing a. In
figure 12(b), we perform this extrapolation for a few specific time points. For the system sizes available
numerically, wefind that the leading order N1 correction is not always sufficient for this purpose, and that also
the next-to-leading order contribution N1 2 has to be considered to yield good fits for all data points. As next
step towards the continuum limit, we decrease the lattice spacing by a factor of 2, yielding =m w 0.5. The
corresponding data is shown in figure 13. Compared to the previous case, finite-size effects become stronger,
especially for larger times. For mt 3, the extrapolation to  ¥N can be performed, as shown in the right
panel offigure 13.Nevertheless, as becomes clear from these data, a fully reliable limit  ¥N requires even
larger systems, which is beyond the capabilities of the utilized numerics.

These results show that it is in principle possible to obtain the continuum limit. Themain long-term
challenges in this context are the preparation of the initial state as well as the need for large system sizes, which
becomesmore severe for decreasing lattice constant a.

6. Conclusions and outlook

In this article we described and analysed a protocol for the digital quantum simulation of the Schwingermodel, a
U(1)-Wilson lattice gauge theory, that has recently been proposed and experimentally demonstrated in [1]. Our
scheme is based on encoding the gauge degrees of freedom in a spin chainwith long-range interactions, and thus
exploits a strategy that has been used previously in numerical calculations.We have shown how the encoded
Hamiltonianwith its complex long-range interactions can be realized using resources available in state-of-the-
art digital quantum simulators, requiring only addressable single-qubitmanipulations and one type of two-
qubit gate. By construction, the protocol retains exact gauge invariance of the dynamics. Furthermore, it realizes
a quantum simulation of -N2 1degrees of freedom (Nmatterfields and -N 1gaugefields) using onlyN

Figure 12. Loschmidt echo rate function k ( )t per unit length for =g m 1and =m w 1. Panel (a) compares the dynamics of k ( )t
for different system sizes. Panel (b) illustrates the extrapolation of the data to the thermodynamic limit for a few selected time points.
Lines are fits including corrections of orders N1 and N1 2. The lines only extend over those data points that have been included in
the fit.
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physical qubits. Aswe have shown, the number of gate operations scales only linearly with system size, thus
allowing for an efficient scaling of such experiments to larger chain lengths.We have performed a careful
analysis of potential error sources. Through numerical finite-size scaling analyses, we found that already
mesoscopic quantum simulators can reliably reproduce the real-time dynamics relevant for larger systems.

Such quantum simulations open exciting prospects, as they are able to extract observables that are not
accessible to conventional experiments, such as the vacuumpersistence amplitude and entanglement entropy.
Thus, we can expect to obtain new insights, e.g., into the propagation of entanglement in out-of-equlibrium
dynamics. In systemswith short-range interactions, the Lieb–Robinson theorem restricts correlations to spread
onlywithin sound cones [79]. This restriction does not apply for long-range interactions [80], and different
dynamical regimes can be observed, for example if interactions follow a power law [81–83]. It will be interesting
to study how the possible dynamics is affected by the exotic type of long-range interactions that govern gauge
theories. Vacuumpersistence amplitudes appear in awide range of contexts in quantummany-body theory
ranging fromquantum chaos [62] to dynamical quantumphase transitions far from equilibrium [64]. Therefore
it is an interesting question towhich extent further insights into the dynamics of lattice gauge theories can be
gained by exploring the connections to these other concepts. Finally, in view of the long-term goal to simulate
lattice gauge theories using controlled quantum systems, it will be very valuable to explore avenues to generalize
the proposed scheme to non-Abelian gauge theories and to two spatial dimensions. In the latter case, it is not
possible to eliminate all gauge degrees of freedom. It is however possible to eliminate a subset of gaugefields
using the constraints posed by theGauss law. This results in amodel involving both, spin- and gauge degrees of
freedom. The resulting dynamics is gauge invariant by construction, as in the one-dimensional case. A natural
first step in this direction is the study of quasi-two-dimensional systems such as ladder systems, that could be
simulated in a string of trapped ions using the approach described in this work if theHilbert space of the gauge
degrees of freedom is truncated.
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Appendix. Entanglement in the encoded Schwingermodel

Weconsider the Schwingermodel in its encoded version, as described in section 2.1, and are interested in
evaluating the entanglement between two adjacent regions in space. As explained below, the entanglement
between two contiguous blocks of the reduced spin system (i.e. in the encodedmodel where the gauge fields have
been analytically eliminated) is identical to the half-chain entropy in the originalmodel (which includes both
matter- and gaugefields). This is a consequence of the fact that the gauge degrees of freedom arefixed for a
certain spin configuration and background field in combinationwith the requirement that only states within a
fixed charge sector are considered.

As explained in detail in section 2.1, the encoding of the Schwingermodel in a pure-spinHamiltonian
involves a gauge transformation that eliminates the gauge field operators which represent the vector potentials,
as well as a Jordan–Wigner transformation thatmaps fermionic degrees of freedom to spin operators. Neither of
these transformations has an effect on the correlations between the left and right half of the system (this can be
understood by noting that either transformation acts on the left subsystemonlywith operators that are entirely
containedwithin this part of the system [84]). In the following, we discuss therefore the last step of the encoding,
which entails the elimination of the gaugefield operators that represent the electric fields in the continuum limit.
We consider the situation illustrated infigure A1(a), which involves spin operators ŝn at lattice sites n and electric
field operators L̂n that are defined on the links between two lattice sites and take integer eigenvalues

=   ¼L 0, 1, 2,n .We assume that the background electric field takes the value  = 00 (as in section 2.1) and
consider a bipartition that is defined by a cut as shown infigure A1(b). TheGauss law

s- = + --ˆ ˆ ( ˆ ( ) )L L 1n n n
z n

1
1

2
can be used to determine the values the electricfield stepwise from left to right

(compare figure 1, panels b and c), such that the full quantum state of the system can bewritten in the form

å lYñ = F ñ F ñ Ä F ñ F ñ∣ ∣ ∣ ∣ ∣‐ ‐ ,
ij

ij i i j ij
spins

L
E fields

L
spins

R
E fields

R

with coefficients lij. In this notation, the subscript L (R) refers to the left (right) part of the chainwith respect to
the chosen cut. For each side, the quantum state can bewritten as a tensor product of a spin state and a state that
refers to the gaugefields. Note that the state referring to the gaugefields of the right part of the systemdepends on
the spin- (and corresponding gaugefield-) state of the left side, as indicated by the subscripts of the last ket.
However, due to charge conservation, theGauss law can also be used to determine the electric fields starting
from the right end of the chain, where the backgroundfield also takes the value  = 00 . Therefore, the full
quantum state of the system can be expressed in the form

å lYñ = F ñ F ñ Ä F ñ F ñ∣ ∣ ∣ ∣ ∣‐ ‐ .
ij

ij i i j j
spins

L
E fields

L
spins

R
E fields

R

This is a consequence of the fact that the electric fields of the right side can be inferred from the backgroundfield
and spin configuration on the right side alone. The gaugefield at the cut can be inferred bymeasuring the spins
on either the right or the left side separately. In otherwords, the gaugefield at the link bears no additional
information once the spin state on either of the two sides is known. This applies also to the gauge field at the cut.
Hence, the entanglement between the two parts of the system can be calculated using the reduced spin state

Figure A1. Illustration of a quantum state that respects Gauss’ law. As explained in the text, we introduce a bipartiton that is defined by
a cut dividing the system into a left part and a right part. For analysing the entanglement between these parts, we consider
superpositions of states of the shown type, where the left (right) part of the system is described by Yñ = Y ñ Y ñ∣ ∣ ∣ ‐

L R
spins

L R
E fields

L R .
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å lY¢ñ = F ñ Ä F ñ∣ ∣ ∣ .
i

ij i j
spins

L
spins

R

It does notmatterwhere the cut is placedwith respect to the position to the nearest gaugefield. The entanglement
can be evaluated by including the gaugefield nearest to the cut to either side. Similarly,methods that are based
on doubling the link and the corresponding gauge field and assigning one copy to either part of the chain [41]
lead to the same result. This argument can be straightforwardly generalized tomixed states.

We note that the entanglement with respect to the originalmodel is not given by the entanglement in the
reduced spin system if the requirement of charge conservation is not fulfilled. In this case, there exist for example
separable reduced spin states which correspond to entangled states of the full system (involving both spin- and
gaugefields). However, this is not a concern as long as charge conservation can be guaranteed to be respected by
the considered time evolution. In the Schwingermodel, changes in the fermion number are only possible
through charge conserving particle–antiparticle creation or annihilation events. This is also the case for the
discretized dynamics realized in our simulation scheme (Trotter errors do not violate charge conservation).
Implementation errors such as spin flips (which correspond to the creation or annihilation of a single charge)
can lead to states that do not respect charge conservation. In this case, the totalmagnetization of the spin system
is nonzero, and the corresponding states can be detected and filtered out by postselection (see section 4.4).
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