228 research outputs found

    Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling

    Get PDF
    Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway

    An Affinity-directed PROtein Missile (AdPROM) system for targeted proteolysis

    Get PDF
    The von Hippel-Lindau (VHL) protein serves to recruit the hypoxia inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an Affinity directed PROtein Missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knockin cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and PAWS1 (protein associated with SMAD1, aka FAM83G) loci respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet- inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate

    Targeting endogenous proteins for degradation through the affinity-directed protein missile system

    Get PDF
    Targeted proteolysis of endogenous proteins is desirable as a research toolkit and in therapeutics. CRISPR/Cas9-mediated gene knockouts are irreversible and often not feasible for many genes. Similarly, RNA interference approaches necessitate prolonged treatments, can lead to incomplete knockdowns and are often associated with off-target effects. Targeted proteolysis can overcome these limitations. In this report, we describe an affinity-directed protein missile (AdPROM) system that harbours the von Hippel–Lindau (VHL) protein, the substrate receptor of the Cullin2 (CUL2) E3 ligase complex, tethered to polypeptide binders that selectively bind and recruit endogenous target proteins to the CUL2-E3 ligase complex for ubiquitination and proteasomal degradation. By using synthetic monobodies that selectively bind the protein tyrosine phosphatase SHP2 and a camelid-derived VHH nanobody that selectively binds the human ASC protein, we demonstrate highly efficient AdPROM-mediated degradation of endogenous SHP2 and ASC in human cell lines. We show that AdPROM-mediated loss of SHP2 in cells impacts SHP2 biology. This study demonstrates for the first time that small polypeptide binders that selectively recognize endogenous target proteins can be exploited for AdPROM-mediated destruction of the target proteins.</jats:p

    Identification and characterization of MUS81 point mutations that abolish interaction with the SLX4 scaffold protein

    Get PDF
    AbstractMUS81-EME1 is a conserved structure-selective endonuclease with a preference for branched DNA substrates in vitro that correspond to intermediates of DNA repair. Cells lacking MUS81 or EME1 show defects in the repair of DNA interstrand crosslinks (ICL) resulting in hypersensitivity to agents such as mitomycin C. In metazoans, a proportion of cellular MUS81-EME1 binds the SLX4 scaffold protein, which is itself instrumental for ICL repair. It was previously reported that mutations in SLX4 that abolished interaction with MUS81 affected ICL repair in human cells but not in murine cells. In this study we looked the other way around by pinpointing amino acid residues in MUS81 that when mutated abolish the interaction with SLX4. These mutations fully rescued the mitomycin C hypersensitivity of MUS81 knockout murine cells, but they were unable to rescue the sensitivity of two different human cell lines defective in MUS81. These data support an SLX4-dependent role for MUS81 in the repair, but not the induction of ICL-induced double-strand breaks. This study sheds light on the extent to which MUS81 function in ICL repair requires interaction with SLX4

    Rapid and reversible knockdown of endogenously tagged endosomal proteins via an optimized HaloPROTAC degrader

    Get PDF
    Inducing post-translational protein knockdown is an important approach to probe biology and validate drug targets. An efficient strategy to achieve this involves expression of a protein of interest fused to an exogenous tag, allowing tag-directed chemical degraders to mediate protein ubiquitylation and proteasomal degradation. Here, we combine improved HaloPROTAC degrader probes with CRISPR/Cas9 genome editing technology to trigger rapid degradation of endogenous target proteins. Our optimized probe, HaloPROTAC-E, a chloroalkane conjugate of high-affinity VHL binder VH298, induced reversible degradation of two endosomally localized proteins, SGK3 and VPS34, with a DC<sub>50</sub> of 3–10 nM. HaloPROTAC-E induced rapid (∼50% degradation after 30 min) and complete (<i>D</i><sub>max</sub> of ∼95% at 48 h) depletion of Halo-tagged SGK3, blocking downstream phosphorylation of the SGK3 substrate NDRG1. HaloPROTAC-E more potently induced greater steady state degradation of Halo tagged endogenous VPS34 than the previously reported HaloPROTAC3 compound. Quantitative global proteomics revealed that HaloPROTAC-E is remarkably selective inducing only degradation of the Halo tagged endogenous VPS34 complex (VPS34, VPS15, Beclin1, and ATG14) and no other proteins were significantly degraded. This study exemplifies the combination of HaloPROTACs with CRISPR/Cas9 endogenous protein tagging as a useful method to induce rapid and reversible degradation of endogenous proteins to interrogate their function
    • …
    corecore