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Supplementary Table S2. Summary of statistical analysis

Figure Experiment Test used Statistic's value P value
1B CUL3 mRNA expression Welch's ANOVA W(4.00, 11.91) = 35.37

+/+_4 vs. +/-_6 Welch's t-test t(8.15) = 5.27 0.0007
+/+_2 vs. +/-_6 Welch's t-test t(6.21) = 5.42 0.0015
+/+_13 vs. +/-_6 Welch's t-test t(9.82) = 4.26 0.0017
+/+_4 vs. +/-_19 Welch's t-test t(9.91) = 10.08 <0.0001
+/+_2 vs. +/-_19 Welch's t-test t(7.63) = 11.48 <0.0001

 +/+_13 vs. +/-_19 Welch's t-test t(7.96) = 7.03 0.0001
2C Cullin-3 protein expression Welch's ANOVA W(4.00, 7.32) = 6.31

+/+_4 vs. +/-_6 Welch's t-test t(4.17) = 4.77 0.0080
+/+_2 vs. +/-_6 Welch's t-test t(5.27) = 4.27 0.0071
+/+_13 vs. +/-_6 Welch's t-test t(6.00) = 4.17 0.0059
+/+_4 vs. +/-_19 Welch's t-test t(5.30) = 3.05 0.0265
+/+_2 vs. +/-_19 Welch's t-test t(6.00) = 2.50 0.0469

 +/+_13 vs. +/-_19 Welch's t-test t(5.16) = 2.60 0.0469
5A PAX6 mRNA expression Welch's ANOVA W(4.00, 4.51) = 316.7

+/+_4 vs. +/-_6 Welch's t-test t(2.20) = 34.92 0.0005
+/+_2 vs. +/-_6 Welch's t-test t(2.03) = 34.85 0.0007
+/+_13 vs. +/-_6 Welch's t-test t(2.14) = 38.48 0.0004
+/+_4 vs. +/-_19 Welch's t-test t(2.05) = 12.52 0.0057
+/+_2 vs. +/-_19 Welch's t-test t(2.01) = 12.17 0.0066

 +/+_13 vs. +/-_19 Welch's t-test t(2.04) = 14.28 0.0045
5B SLC1A3 mRNA expression Welch's ANOVA W(4.00, 4.67) = 5567

+/+_4 vs. +/-_6 Welch's t-test t(2.01) = 21.98 0.0020
+/+_2 vs. +/-_6 Welch's t-test t(2.02) = 20.51 0.0022
+/+_13 vs. +/-_6 Welch's t-test t(2.00) = 21.15 0.0022
+/+_4 vs. +/-_19 Welch's t-test t(3.86) = 156.6 <0.0001
+/+_2 vs. +/-_19 Welch's t-test t(3.52) = 98.39 <0.0001

 +/+_13 vs. +/-_19 Welch's t-test t(2.86) = 168.4 <0.0001
5C Pax-6 positive cells Welch's ANOVA W(4.00, 4.42) = 41.98

+/+_4 vs. +/-_6 Welch's t-test t(2.03) = 10.10 0.0092
+/+_2 vs. +/-_6 Welch's t-test t(2.00) = 10.54 0.0088
+/+_13 vs. +/-_6 Welch's t-test t(2.01) = 10.38 0.0090
+/+_4 vs. +/-_19 Welch's t-test t(2.61) = 8.13 0.0064
+/+_2 vs. +/-_19 Welch's t-test t(2.06) = 10.63 0.0079

 +/+_13 vs. +/-_19 Welch's t-test t(2.30) = 9.65 0.0066
6A MEA spike rate two-way ANOVA

   Interaction F(2, 341) = 12.40
   Row factor F(2, 341) = 5.43
   Column factor F(1, 341) = 38.62

+/+_div19 vs. +/-_div19 Welch's t-test t(56.35) = 5.11 <0.0001
 +/+_div23 vs. +/-_div23 Welch's t-test t(48.39) = 6.64 <0.0001
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Supplementary Table S2. Summary of statistical analysis (continued)

Figure Experiment Test used Statistic's value P value
8 Number of rosettes Kruskal-Wallis KW(5) = 214.9

+/+_4 vs. +/-_6 Mann-Whitney U U(50,47) = 25 <0.0001
+/+_2 vs. +/-_6 Mann-Whitney U U(50,47) = 25 <0.0001
+/+_13 vs. +/-_6 Mann-Whitney U U(50,47) = 25 <0.0001
+/+_4 vs. +/-_19 Mann-Whitney U U(50,48) = 225 <0.0001
+/+_2 vs. +/-_19 Mann-Whitney U U(50,48) = 225 <0.0001

 +/+_13 vs. +/-_19 Mann-Whitney U U(50,48) = 225 <0.0001
9B Syn-1/2 positive puncta Welch's ANOVA W(4.00, 1197) = 760.8

+/+_4 vs. +/-_6 Welch's t-test t(719.1) = 33.45 <0.0001
+/+_2 vs. +/-_6 Welch's t-test t(704.2) = 33.98 <0.0001
+/+_13 vs. +/-_6 Welch's t-test t(810.3) = 43.33 <0.0001
+/+_4 vs. +/-_19 Welch's t-test t(932.2) = 17.37 <0.0001
+/+_2 vs. +/-_19 Welch's t-test t(924.4) = 16.73 <0.0001

 +/+_13 vs. +/-_19 Welch's t-test t(1033) = 23.97 <0.0001
10B MEA spike rate two-way ANOVA

   Interaction F (2, 102) = 8.224
   Row factor F (2, 102) = 215.3
   Column factor F (1, 102) = 25.28

+/+_2mA vs. +/-_2mA Welch's t-test t(21.09) = 3.09 0.0056
 +/+_5mA vs. +/-_5mA Welch's t-test t(23.93) = 4.07 0.0004
10C Calcium imaging two-way ANOVA

   Interaction F (4, 110) = 6.289
   Row factor F (4, 110) = 248.5
   Column factor F (1, 110) = 85.62

+/+_2Hz vs. +/-_2Hz Welch's t-test t(20.61) = 4.18 0.0004
+/+_5Hz vs. +/-_5Hz Welch's t-test t(18.58) = 4.36 0.0004
+/+_10Hz vs. +/-_10Hz Welch's t-test t(18.25) = 4.92 0.0001
+/+_20Hz vs. +/-_20Hz Welch's t-test t(19.10) = 4.81 0.0001

 +/+_50Hz vs. +/-_50Hz Welch's t-test t(20.32) = 4.61 0.0002
11B mRNA expression

+/+_SPRY1 vs. +/-_SPRY1 Welch's t-test t(28.81) = 3.36 0.0022
 +/+_IL17RD vs. +/-_IL17RD Welch's t-test t(29.56) = 2.83 0.0083

Supplementary Table S1. Primary antibodies used for immunocytochemistry (ICC) or 

immunoblotting (IB).

Name Species Clonality Dilution Supplier Cat. No.
Anti-Cullin-3 Mouse Monoclonal 1:200 IB Santa Cruz, 

Dallas, TX, 
USA

sc-166110

Anti-Cullin-3 Goat Polyclonal 1:200 IB Santa Cruz, 
Dallas, TX, 
USA

sc-8556
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Anti-beta-
Actin

Mouse Monoclonal 1:3000 IB Sigma-Aldrich, 
St. Louis, MO, 
USA

A5316

Anti-Oct-4 Rabbit Monoclonal 1:400 ICC Cell Signaling 
Technology, 
Danvers, MA, 
USA 

2840

Anti-Tra-1-60 Mouse Monoclonal 1:100 ICC STEMCELL, 
Vancouver, 
Canada 

60064

Anti-Pax-6 Rabbit Polyclonal 1:100 ICC Thermo Fisher 
Scientific, 
Waltham, MA, 
USA

42-6600

Anti-Map-2 Chicken Polyclonal 1:1000 ICC EnCor 
Biotechnology, 
Gainesville, 
FL, USA

CPCA-
MAP2

Anti-vGlut-1 Mouse Monoclonal 1:1000 ICC Synaptic 
Systems, 
Goettingen, 
Germany

135511

Anti-Syn-1/2 Rabbit Polyclonal 1:5000 ICC Synaptic 
Systems, 
Goettingen, 
Germany

106002

Anti-Psd-95 Mouse Monoclonal 1:100 ICC Thermo Fisher 
Scientific, 
Waltham, MA, 
USA

MA1-046

Anti-RhoA Mouse Monoclonal 1:250 IB Cytoskeleton,
Denver, CO, 
USA
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35 Abstract
36 Both rare, high risk, loss-of-function mutations and common, low risk, genetic variants in the 

37 CUL3 gene are strongly associated with neuropsychiatric disorders. Network analyses of 

38 neuropsychiatric risk genes have shown high CUL3 expression in the prenatal human brain 

39 and an enrichment in neural precursor cells (NPCs) and cortical neurons. The role of CUL3 in 

40 human neurodevelopment however, is poorly understood. In the present study, we used 

41 CRISPR/Cas9 nickase to knockout CUL3 in human induced pluripotent stem cells (iPSCs). 

42 iPSCs were subsequently differentiated into cortical glutamatergic neurons using two different 

43 protocols and tested for structural/functional alterations. Immunocytochemical analysis and 

44 transcriptomic profiling revealed that pluripotency of heterozygous CUL3 knockout (KO) iPSCs 

45 remained unchanged compared to isogenic control iPSCs. Following small molecule-mediated 

46 differentiation into cortical glutamatergic neurons however, we detected a significant delay in 

47 transition from proliferating radial glia cells/NPCs to postmitotic neurons in CUL3 KO cultures. 

48 Notably, direct neural conversion of CUL3 KO iPSCs by lentiviral expression of Neurogenin-2 

49 massively attenuated the neurodevelopmental delay. However, both optogenetic and electrical 

50 stimulation of induced neurons revealed decreased excitability in Cullin-3 deficient cultures, 

51 while basal synaptic transmission remained unchanged. Analysis of target gene expression 

52 pointed to alterations in FGF signaling in CUL3 KO NPCs, which is required for NPC 

53 proliferation and self-renewal, while RhoA and Notch signaling appeared unaffected.  Our data 

54 provide first evidence for a major role of Cullin-3 in neuronal differentiation, and for 

55 neurodevelopmental deficits underlying neuropsychiatric disorders associated with CUL3 

56 mutations.

57

58 Keywords: Neuropsychiatric disorders, CUL3, CRISPR/Cas9 nickase, induced pluripotent 

59 stem cells, human glutamatergic neurons, direct neuronal conversion 
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60 INTRODUCTION
61

62 Schizophrenia (SZ) is a severe neuropsychiatric disorder that affects about 21 million people 

63 worldwide and has a prevalence of approximately 1% (Lewis DA and Gonzalez-Burgos G, 

64 2006; Millan MJ et al., 2016). SZ patients exhibit both positive symptoms (e.g. hallucinations, 

65 disorganized thought and speech), and negative symptoms, (e.g. cognitive impairments, social 

66 withdrawal) (Lewis DA and Gonzalez-Burgos G, 2006; Millan MJ et al., 2016). Since current 

67 medications mainly alleviate positive symptoms, there is a high unmet medical need for novel 

68 therapies targeting negative symptoms (reviewed in (Brennand KJ et al., 2011)). 

69 Environmental factors (e.g. stress in early life) increase the risk for SZ, but there is also a 

70 strong genetic component with a heritability of approximately 80% (Bahari-Javan S et al., 2017; 

71 Sullivan PF et al., 2003; Walsh T et al., 2008). 

72 In 2014, a landmark genome-wide association study (GWAS) reported 108 schizophrenia-

73 associated genomic loci representing low risk, common variants (Schizophrenia Working 

74 Group of the Psychiatric Genomics C, 2014). In this study, the CUL3 gene, which encodes the 

75 E3 ubiquitin ligase Cullin-3, was assigned to a non-coding risk locus by genomic proximity. In 

76 a more recent GWAS of schizophrenia, CUL3 was functionally annotated to non-coding 

77 genetic risk variants by chromatin conformation capture using both human brain tissue and 

78 iPSC-derived cortical neurons (Li M et al., 2018; Rajarajan P et al., 2018). Whether these non-

79 coding risk variants increase or decrease CUL3 gene expression remains to be tested. The 

80 CUL3 gene is also affected by rare, high risk, de novo mutations in protein coding regions in 

81 patients diagnosed with SZ or autism spectrum disorder (ASD) (Lin GN et al., 2015). Moreover, 

82 CUL3 is listed as one of 23 high confidence risk genes for ASD in the SFARI Gene database 

83 (gene.safari.org/database). The E3 ubiquitin ligase Cullin-3 targets protein substrates for 

84 proteasomal degradation (reviewed in (Hershko A and Ciechanover A, 1998)). Cullin-3 binds 

85 to specific adaptor proteins that are important for recognition and ubiquitylation of protein 

86 substrates. Notably, protein-truncating, de novo mutations in CUL3 were detected in ASD 

87 patients, which disrupt Cullin-3 interaction with its adaptor, potassium channel tetramerization 

88 domain containing 13 protein (KCTD13) (Lin GN et al., 2015). 

89 During the last decade, numerous iPSC lines were generated from patients diagnosed with 

90 various neuropsychiatric diseases. Differentiation of human iPSCs into forebrain neurons and 

91 subsequent structural/functional analyses contributed to a better understanding of the 

92 neurodevelopmental pathomechanisms that increase the risk for neuropsychiatric disorders 

93 (Brennand KJ et al., 2011; Marchetto MC et al., 2010; Murai K et al., 2016; Pasca SP et al., 

94 2011; Sheridan SD et al., 2011). Several points are speaking in favor of CUL3 disease 
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95 modeling in iPSC-derived cortical glutamatergic neurons: (i) co-expression of CUL3 and its 

96 adaptor KCTD13 is high in the mid-fetal period of the developing human cortex (Kang HJ et 

97 al., 2011; Lin GN et al., 2015), (ii) the transcriptomic profile of human iPSC-derived neurons 

98 correlates best with that of human mid-fetal cortical neurons (Brennand K et al., 2015; van de 

99 Leemput J et al., 2014), and (iii) gene co-expression network analysis based on nine high 

100 confidence ASD risk genes including CUL3 showed convergence in mid-fetal cortical 

101 glutamatergic neurons (Willsey AJ et al., 2013). In the present study, we used CRISPR/Cas9 

102 nickase to generate CUL3 knockout (KO) human iPSC lines and isogenic controls. This 

103 approach reduces off-target DNA cleavage observed with Cas9 nuclease (Ran FA et al., 2013), 

104 and minimizes the high variability observed with case/control iPSC lines carrying a different 

105 genetic background (Kyttala A et al., 2016). We differentiated the heterozygous CUL3 KO iPSC 

106 lines and the isogenic control iPSC lines into neural progenitor cells (NPCs) and cortical 

107 glutamatergic neurons using two protocols that others have employed to functionally assign 

108 non-coding SZ risk loci to causal genes by open chromatin profiling and chromatin interaction 

109 assays (Forrest MP et al., 2017; Rajarajan P et al., 2018). Small molecule-mediated neuronal 

110 differentiation revealed a massive delay in transition from proliferating radial glia cells/NPCs to 

111 postmitotic neurons in CUL3 KO cultures. This neurodevelopmental delay was not detectable 

112 by direct neuronal conversion of CUL3 KO iPSCs, however, induced Cullin-3 deficient neurons 

113 showed decreased excitability. Taken together, our study provides first evidence for a role of 

114 Cullin-3 ubiquitin ligase in human neurodevelopment and for potential neurodevelopmental 

115 deficits in psychiatric patients carrying CUL3 loss-of-function mutations.      

116

117

118 EXPERIMENTAL PROCEDURES
119

120 Culture of human induced pluripotent stem cells  
121 The quality-controlled (Sendai virus clearance, pluripotency, normal karyotype) human iPSC 

122 line SB Ad3 clone 4 (reprogrammed from skin fibroblasts of a 31 years old, healthy donor) was 

123 obtained from the StemBancc consortium (Kizner V et al., 2019; Morrison M et al., 2015). All 

124 iPSC lines were maintained under feeder-free conditions in Essential 8 medium (Gibco, Big 

125 Cabin, OK, USA) supplemented with 1:100 Antibiotic-Antimycotic (Life Technologies, Carlsbad, 

126 CA, USA). Cells were seeded on 6-well tissue culture plates (Sarstedt, Nümbrecht, Germany) 

127 coated with Matrigel basement membrane matrix (Corning, Corning, NY, USA). Matrigel was 

128 diluted 1:10 in DMEM/F12 and Glutamax (Gibco, Big Cabin, OK, USA). Cells were split before 

129 reaching 100% confluence using 0.02% EDTA (Sigma-Aldrich, St. Louis, MO, USA) and were 

130 replated in E8 medium supplemented with 10 µM ROCK inhibitor Y27632 (Tocris, Bristol, 
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131 United Kingdom). Cells were cultured at 37°C and 5% CO2. All iPSC lines and iPSC-derived 

132 cells were negatively tested for mycoplasma using MycoAlert™ PLUS Mycoplasma Detection 

133 Kit (Lonza, Basel, Switzerland) according to the manufacturer’s protocol. 

134

135 Genome editing using CRISPR/Cas9 D10A nickase
136 The human iPSC line SB Ad3 clone 4 (abbreviated CB4) (Morrison M et al., 2015) was used 

137 for CUL3 gene knockout by Cas9 D10A nickase and two guide RNAs (gRNAs). The gRNAs 

138 were identified using the Sanger Institute CRISPR webtool 

139 (http://www.sanger.ac.uk/htgt/wge/find_crisprs) and chosen on the basis of having the lowest 

140 combined off-targeting score whilst targeting as many of the known and predicted transcripts 

141 as possible. Since there exists no off target pairing of these gRNAs closer than 1kb to one 

142 another, we consider the possibility of off-target DNA cleavage to be negligible. Both gRNAs 

143 target exon 5 of the CUL3 gene. The antisense guide 5’-GACCTAAAATCATTAACATC-3’ was 

144 cloned into the spCas9 D10A nickase expressing vector pX335 and the sense guide 5’-

145 GAGTCTATGAAGAAGATTTTG-3’ into the puromycin selectable plasmid pBABED P U6. 

146 Human iPSCs were grown to 80% confluency and treated with 10 µM ROCK inhibitor Y27632 

147 one day prior to nucleofection. Cells were dissociated into single cells using 0.5 ml Accutase 

148 (Merck). 5 µg of each plasmid were mixed with the nucleofection solution of the Amaxa Human 

149 Stem Cell Nucleofector Starter Kit (Lonza, Basel, Switzerland). Nucleofection was performed 

150 using program B-016 of the Amaxa nucleofector device. Nucleofected iPSCs were seeded on 

151 Matrigel-coated 10 cm cell culture dishes containing E8 medium and 10 µM ROCK inhibitor 

152 Y27632.  After 24 hours, medium was changed to E8 supplemented with 0.5 µg/ml puromycin 

153 (Merck, Darmstadt, Germany) for 3 days and replaced daily. Puromycin resistant single iPSC 

154 colonies were picked and expanded under iPSC maintenance conditions. 

155

156 T7 Endonuclease Assay
157 Formation of insertions/deletions following Cas9 D10A nicking in the CUL3 exon 5 region was 

158 tested using T7 Endonuclease assay according to the protocol of the EnGen Mutation 

159 Detection Kit (New England Biolabs, Ipswich, MA, USA).  DNA of iPSC clones was extracted 

160 using QuickExtract™ DNA Extraction Solution 1.0 according to the manufacturer’s protocol 

161 (Epicentre, Madison, WI, USA). Genomic regions encompassing the gRNA target sites were 

162 amplified using forward primer 5’-GCTGCAGCTAAAGTGGCTTG-3’ and reverse primer 5’-

163 AGCCTGCAGATGAGACTTCG-3’. Annealing temperature was calculated using Tm calculator 

164 from New England Biolabs (https://www.neb.com/). PCR amplification was performed using 

165 the following cycling conditions: 1 cycle for 30 seconds at 98°C, 35 cycles for 5, 10 and 50 

166 seconds at 98°C, 65°C and 72°C respectively, followed by 1 cycle for 7 minutes at 72°C. PCR 

http://www.sanger.ac.uk/htgt/wge/find_crisprs
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167 products were electrophoretically separated on a 2% E-Gel Precast Agarose Gel stained with 

168 ethidium bromide (Thermo Fisher Scientific, Waltham, MA, USA) on an E-Gel iBaseTM Power 

169 System device (2 min of PRE-RUN and program 1E-Gel 0.8-2%) for 26 min. Images were 

170 analyzed using the ChemiDoc gel imaging system (Bio-Rad, Hercules, CA, USA). Fragment 

171 analysis considered samples with only one full-length, non-cleaved band as negative clones, 

172 whereas more than two bands indicate insertion/deletion formation following Cas9 D10A 

173 nicking. 

174

175 Karyotype analysis
176 DNA was extracted from nucleofected iPSC clones using Qiagen AllPrep DNA/RNA Micro Kits 

177 according to the manufacturer’s protocol (Qiagen, Hilden, Germany). DNA samples were sent 

178 to Life & Brain Genomics (Bonn, Germany) for karyotype analysis using the Illumina BeadArray 

179 Technology (HumanOmni2.5Exome-8 BeadChip v1.3, Illumina, San Diego, CA, USA). 

180 Genotypes were analyzed using GenomeStudio V2.0.2. For copy number analysis, the CNV-

181 Partition algorithm version 3.2 (Illumina, San Diego, CA, USA) was applied. Copy number 

182 variants were reported, if larger than 350.000 base pairs.

183

184 DNA sequencing 
185 Genomic DNA encompassing the gRNA target sites was amplified using HotStart Q5 

186 Polymerase (New England Biolabs, Ipswich, MA, USA). PCR products were custom 

187 sequenced by Sequiserve (Munich, Germany). 

188

189 Neuronal differentiation of iPSCs using small molecules
190 Differentiation of iPSCs into neural progenitor cells (NPCs) and cortical glutamatergic neurons 

191 was based on a well-established protocol (Shi Y et al., 2012; Shi Y et al., 2012), which others 

192 have employed to assign non-coding SZ risk variants to causal genes by open chromatin 

193 profiling (Forrest MP et al., 2017). Neural induction was initiated by incubating iPSCs (at 

194 approximately 90% confluency) for 8-12 days with Neural Induction Medium consisting of 250 

195 ml DMEM/F12 and GlutaMAXTM medium, 250 ml NeurobasalTM medium, 1.25 mg Insulin 

196 (Sigma-Aldrich, St. Louis, MO, USA), 2.5 ml Sodium Pyruvate (Sigma-Aldrich, St. Louis, MO, 

197 USA), 0.5 ml beta-mercaptoethanol, 2.5 ml Non-Essential Amino Acids Solution (100x), 1.25 

198 ml PenStrep, 2.5 ml N2 supplement (100x), 5 ml B-27TM supplement (50x, serum free), 2.5 ml 

199 L-Glutamine (all Thermo Fisher Scientific, Waltham, MA, USA), 1 µM Dorsomorphin  and 10 

200 µM SB431542 (both Merck, Darmstadt, Germany). Neuroepithelial sheets were dissociated 

201 with 10 mg/ml Dispase (Thermo Fisher Scientific, Waltham, MA, USA) on day 8 and replated 

202 on laminin-coated (Sigma-Aldrich, St. Louis, MO, USA) 6 well plates. On day 13, neural rosette 
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203 formation was promoted by adding medium with 20 ng/ml FGF2 (R&D Systems, Minneapolis, 

204 MN, USA) for 4 days. Non-neuronal differentiation was reduced by multiple dissociation steps 

205 using 10 mg/ml Dispase. From day 17 to 25 medium was exchanged every second day. On 

206 day 25, NPCs were dissociated into single cells using Accutase (Merck, Darmstadt, Germany). 

207 For differentiation into cortical neurons, NPCs were seeded on 2x concentrated Matrigel plates. 

208 Cells were cultured in medium containing 10 µM DAPT (STEMCELL, Vancouver, Canada), 50 

209 µM cAMP, 20 ng/ml BDNF and 20 ng/ml GDNF (both PeproTech, Rocky Hill, NJ, USA) for four 

210 days and subsequently replated on assay plates coated with 0.07% polyethyleneimine (Sigma-

211 Aldrich, St. Louis, MO, USA) in borate buffer and 1:100 laminin (Sigma-Aldrich, St. Louis, MO, 

212 USA). For neuronal maturation, DAPT was omitted and medium containing 50 µM cAMP, 20 

213 ng/ml BDNF and 20 ng/ml GDNF was exchanged three times per week.

214

215 Direct neuronal conversion of iPSCs using lentiviral NGN2 expression
216 Human iPSCs were directly converted into glutamatergic cortical neurons by tetracycline-

217 inducible expression of the neuralizing transcription factor Neurogenin-2 (NGN2) following 

218 lentiviral transduction as originally described by Zhang et al (Zhang Y et al., 2013). Lentiviral 

219 production was performed as described elsewhere (Colasante G et al., 2015). For accelerated 

220 induction of excitatory neurons, we combined direct NGN2-mediated conversion with 

221 developmental pattering, as recently reported by others (Nehme R et al., 2018; Qi Y et al., 

222 2017). Human iPSC were patterned towards a dorsal forebrain phenotype by pharmacological 

223 inhibition of TGF-beta, BMP, and WNT signaling using SB431542 (10 µM), LDN193189 (250 

224 nM), and XAV939 (5 µM). To accelerate neuronal fate acquisition, we additionally inhibited 

225 FGF, Notch, and MEK signaling using SU5402 (10 µM), DAPT (10 µM), and PD0325901 (8 

226 µM). Induced neurons were replated and cocultured with rat primary cortical astrocytes 

227 (Thermo Fisher Scientific, Waltham, MA, USA) on day 8 post transduction in order to promote 

228 neuronal maturation and synapse formation (Zhang Y et al., 2013). 

229

230 Quantitative real time PCR (qRT-PCR)
231 Cells were lysed in RLT buffer (Qiagen, Hilden, Germany) supplemented with 1% beta-

232 mercaptoethanol (Carl Roth, Karlsruhe, Germany). Lysates were homogenised using 

233 QIAshredder columns (Qiagen, Hilden, Germany) and total RNA was extracted using RNeasy 

234 Mini Kit (Qiagen, Hilden, Germany) as described in the manufacturer’s protocol including an 

235 on-column DNase digestion step. RNA concentration and quality were analyzed using a 

236 NanoDrop 1000 device (Thermo Fisher Scientific, Waltham, MA, USA). RNA was reverse 

237 transcribed to cDNA using SuperScript VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, 
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238 USA) according to manufacturer’s protocol. For PCR analysis triplicates of cDNA samples 

239 were amplified using TaqMan Gene Expression Assay (Thermo Fisher Scientific, Waltham, 

240 MA, USA and QuantiFast Probe RT-PCR MasterMix (Qiagen, Hilden, Germany). Validated 

241 primer pairs for human transcripts were acquired from Thermo Fisher Scientific (Waltham, MA, 

242 USA). The CUL3 primer pair binds on the exon 14-15 boundary. PCR data were analyzed 

243 using QuantStudio™ 6 Flex Real-Time PCR System (Applied Biosystems, Foster City, CA, 

244 USA). Samples were normalised to the housekeeping gene POLR2A and evaluated by the 

245 ΔΔCT method.  

246

247 Immunocytochemical analysis
248 Cells were fixed in 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) in phosphate-

249 buffered saline (PBS) for 15 minutes at room temperature. After three washing steps, cells 

250 were permeabilized in 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) for 15 minutes. 

251 Unspecific protein binding was blocked in 5% Normal Goat Serum (Cell Signaling Technology, 

252 Danvers, MA, USA) at room temperature for 2 hours. Primary antibodies were diluted in 10% 

253 Fetal Bovine Serum (Gibco, Big Cabin, OK, USA) and incubated over night at 4°C. Primary 

254 antibodies used for immunocytochemistry are listed in Supplementary Table 1. Alexa-

255 conjugated secondary antibodies were diluted in 5% Fetal Bovine Serum and incubated for 2 

256 hours at room temperature, protected from light. Hoechst 33342 dye (1:2000 in PBS) 

257 (Molecular Probes, Eugene, OR, USA) was used to stain nuclei. For detection of the 

258 fluorescent signals, the Opera Phenix™ High-Content Screening System (PerkinElmer, 

259 Waltham, MA, USA) at 20x or 63x magnification was used. Digital images were analyzed using 

260 Columbus software (Version 2.7.0.130974, PerkinElmer, Waltham, MA, USA) as described in 

261 detail elsewhere (Kizner V et al., 2019). Dead cells showing condensed/fragmented nuclei 

262 were excluded from analysis. The ratio of immunofluorescent cells to viable cells (Hoechst-

263 positive, non-condensed/non-fragmented nuclei) was calculated to evaluate the percentage of 

264 immunopositive cells. 

265

266 Immunoblot analysis
267 Cells were lysed in Cell Lysis Buffer (Cell Signaling Technology, Danvers, MA, USA) 

268 supplemented with 1:100 protease inhibitor cocktail and phosphatase inhibitor cocktail 2 (both 

269 Sigma). Samples were incubated on ice for 15-20 min. Subsequently, cell debris was pelleted 

270 by centrifugation at 21000xg for 10 min at 4°C, and supernatants were used for further analysis. 

271 Protein concentrations were determined using BioRad Assay Dye Reagent and a microplate 

272 reader Wallac Victor (Perkin Elmer). Briefly, 10 µl of BSA protein standards and 10 µl protein 

273 samples (diluted 1:10 in ddH2O) were added to a 96-well plate. 200 µl BioRad Assay Dye 
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274 Reagent was added and incubated for 5 min in the dark. Plate was measured and protein 

275 concentration was calculated using Excel and GraphPad Prism. SDS gel-electrophoresis of 

276 protein lysates was performed using NuPAGE™ 4-12% Bis-Tris Protein Gels (Life 

277 Technologies, Carlsbad, CA, USA) at 200 V for 45 minutes in 3-(N-morpholino)propanesulfonic 

278 acid (MOPS) buffer (Invitrogen, Carlsbad, CA, USA). Proteins were transferred to a 

279 nitrocellulose membrane in Tris-Glycine Buffer (Bio-Rad, Hercules, CA, USA) supplemented 

280 with 20% methanol at 100 V for 90 minutes. MemCode Reversible Protein Stain (Thermo 

281 Fisher Scientific, Waltham, MA, USA) was used to assess equal protein loading. Membranes 

282 were blocked with 5% milk powder in TBS and 0.1% Tween20 (TBST) for 2 hours followed by 

283 incubation with primary antibodies at 4°C overnight. Primary antibodies are listed in 

284 Supplementary Table 1. HRP-conjugated secondary antibodies were added for 2 hours, and 

285 protein bands were visualised by enhanced chemiluminescence using Western Lightning Plus-

286 ECL reagent (PerkinElmer, Waltham, MA, USA). Some blot membranes were stripped using 

287 Pierce Restore Western Blot Stripping Buffer (Thermo Fisher Scientific, Waltham, MA, USA) 

288 for 15 min at room temperature, washed in TBST, blocked and incubated with antibodies as 

289 described above. Blots were imaged using a ChemiDoc Imaging System (Bio-Rad, Hercules, 

290 CA, USA) and volume band intensity was quantified using ImageLab Software (Bio-Rad, 

291 Hercules, CA, USA).      

292

293 Modeling of protein structure
294 Modeling of 3-dimensional protein structure was based on the amino acid sequence of Cullin-3 

295 protein available from from UniProt Knowledgebase (http://www.uniprot.org/uniprot/Q13618), 

296 the protein structure homology-modeling software from SWISS-MODEL 

297 (https://swissmodel.expasy.org/interactive) (Waterhouse A et al., 2018) and the molecular 

298 visualisation software PyMOL (The PyMOL Molecular Graphics System, Version 2.0 

299 Schrödinger, LLC).

300

301 EdU labeling of proliferating cells
302 Click-iT EdU Imaging Kit including Alexa Fluor® 488, 594 and 647 Azides (Life Technologies, 

303 Carlsbad, CA, USA) was used according to the manufacturer’s protocol. 20 μM EdU solution 

304 was added to proliferating iPSCs/NPCs and incubated at 37°C for 60 minutes. Cells were fixed 

305 in 4% PFA for 15 minutes at room temperature, followed by permeabilisation in 0.5% Triton X-

306 100 for 20 minutes. Click-iT reaction cocktail was added to each well and incubated for 30 

307 minutes, protected from light. Hoechst 33342 (1:16000 in PBS) was added for nuclear DNA 

308 counterstaining. Detection of EdU positive cells was performed using Opera Phenix™ High-

309 Content Screening System (PerkinElmer, Waltham, MA, USA) (20x water objective and 

https://swissmodel.expasy.org/interactive


13

310 channels Alexa488, Alexa594, Alexa647 and DAPI). Images were analyzed using Columbus 

311 software and the ratios of EdU-positive proliferating cells to Hoechst-positive total cells were 

312 calculated.

313

314 PCR Array analyses
315 To analyze expression of genes regulating human neurogenesis, RT² Profiler™ PCR Arrays 

316 Human Neurogenesis (Qiagen, Hilden, Germany, Format A) were used as described in the 

317 PCR array handbook (http://www.sabiosciences.com/Manual/1070190.pdf). RNA was 

318 extracted from NPC lysates using RNeasy Mini Kits (Qiagen, Hilden, Germany). Reverse 

319 transcription to cDNA was performed using RT2 First Strand Kit (Qiagen, Hilden, Germany). A 

320 genomic DNA elimination mix was added to 500 ng RNA and incubated for 5 minutes at 42°C 

321 followed by 1 minute on ice. Reverse-transcription mix was then added to the genomic DNA 

322 elimination mix and incubated for another 15 minutes at 42°C. Reaction was stopped by 

323 incubation at 95°C for 5 minutes. 2xRT2 SYBR Green Mastermix and RNase-free-water were 

324 added to the cDNA. Real-time PCR was performed using QuantStudio 6k Flex (Applied 

325 Biosystems, Foster City, CA, USA). Cycling conditions were as follows: 1 cycle for 10 minutes 

326 at 95°C, and 40 cycles with 15 seconds (95°C) and 1 minute (60°C). Baseline settings were 

327 calculated automatically, whereas the threshold (ΔRn vs cycle) was manually set to 0.05. Gene 

328 expression was analyzed using the ΔΔCT-method and the online Qiagen software tool 

329 (www.sabiosciences.com/pcrdataanalysis.php). The CT cut-off was set to 30. Genes with a 

330 fold-regulation greater than 2 or smaller than -2 compared to the wildtype clones were 

331 considered as deregulated. P-values were calculated by comparing the three wildtype clones 

332 versus the three CUL3 knockdown clones, and p-value threshold was set to 0.1. 

333 To analyze expression of human genes encoding neurotransmitter receptors/transporters, 

334 TaqMan™ Arrays Human Neurotransmitters (Applied Biosystems, Foster City, CA, USA) were 

335 used according to the manufacturer’s manual (https://assets.thermofisher.com/TFS-

336 Assets/LSG/manuals/cms_053406.pdf). Sample preparations and experimental procedures 

337 were performed as described in the PCR array handbook 

338 (http://www.sabiosciences.com/Manual/1070190.pdf) and below. Post-mitotic neurons derived 

339 from iPSCs were lysed in RLT-buffer supplemented with 1% beta-mercaptoethanol after 16 

340 days of maturation. RNA was extracted using RNeasy Micro Kit according to the 

341 manufacturer’s protocol (Qiagen, Hilden, Germany). Transcription to cDNA was performed as 

342 described in the manual of the High-Capacity cDNA Reverse Transcription Kit (Applied 

343 Biosystems, Foster City, CA, USA). TaqMan Gene Expression Master Mix (Thermo Fisher 

344 Scientific, Waltham, MA, USA) was added to the cDNA samples. Real-time PCR was 

345 performed using QuantStudio 6k Flex (Applied Biosystems, Foster City, CA, USA). Cycling 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_053406.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_053406.pdf
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346 conditions and instrument settings are described in the Neurogenesis PCR Array chapter 

347 above. For data evaluation, CT-values were exported to Excel and analyzed using the ΔΔCT-

348 method. The CT cut-off was set to 30. Genes with a fold-regulation greater than 2 or smaller 

349 than -2 compared to the wildtype clones were considered as deregulated. P-values were 

350 calculated by comparing the three wildtype clones versus the three knockdown clones and p-

351 value threshold was set to 0.05.

352

353 Multi-electrode array recordings and optogenetic stimulation
354 Multi-electrode array (MEA) plates (24-well, Multi Channel Systems MCS, Reutlingen, 

355 Germany) were coated by adding 100 µl polyethylenimine solution (0.07%) per well and 

356 incubating for 1h at 37°C. Plates were rinsed twice with PBS and water and dried overnight. 

357 On the following day, neurons were dot-seeded on the electrode area at a density of 120,000 

358 cells per well in 10 µl medium containing 80 µg/ml laminin. After 1h incubation at 37°C, medium 

359 volume was increased to 500 µl. A 50% medium exchange was performed every 2-3 days. 

360 Spontaneous extracellular field potentials were recorded at 37°C under a 5% CO2 atmosphere 

361 using the Multiwell-MEA system and Multiwell Screen software (Multi Channel Systems MCS, 

362 Reutlingen, Germany). After an equilibration period of 5 min, recordings were performed for 

363 10 min at a sampling rate of 20 kHz. A 10 Hz to 2.5 kHz bandwidth filter was applied. Data 

364 analysis was performed using Multiwell Analyzer software (Multi Channel Systems MCS, 

365 Reutlingen, Germany). Spikes were counted, if the recorded signal exceeded a threshold of 5 

366 times the standard deviation of the baseline noise level. Electrodes were considered active, if 

367 the spike rate exceeded 0.1 Hz. A burst was defined as a series of at least 7 consecutive 

368 spikes with a maximum inter-spike interval of 50 ms. Network bursts were counted, if a 

369 minimum of 8 out of 12 electrodes per well recorded simultaneous burst-firing. Multiparametric 

370 analysis of spikes, bursts and network bursts was performed using Microsoft Excel (Microsoft 

371 Corporation, Redmond, WA, USA) and GraphPad Prism 8 (GraphPad Software, San Diego, 

372 CA, USA). For artifact-free, precise stimulation, iPSCs were transduced both with a lentiviral 

373 vector encoding channelrhodopsin-2 (ChR2), a light-gated cation channel (Nagel, PNAS, 

374 2003), tagged with a fluorescent EYFP reporter and with lentiviral NGN2. On day 34 of 

375 neuronal maturation, brief (50 ms) blue light pulses (470 nm) were applied to ChR2 expressing 

376 neurons by a 3x24 light emitting diodes (LEDs) carrying device (LED stimulator MW24-opto-

377 stim, Multi Channel Systems MCS, Reutlingen, Germany) that was positioned onto the MEA 

378 plate. Light intensity was modulated by applying pulses at controlled currents ranging from 2 

379 mA to 5 mA (Multiwell-Screen software, Multi Channel Systems MCS, Reutlingen, Germany).    

380

381 Calcium imaging
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382 Calcium imaging was performed using a fluorometric imaging plate reader (FLIPR Tetra, 

383 Molecular Devices, San Jose, CA, USA). Neurons were seeded into 384-well plates coated 

384 with poly-L-lysine, laminin and fibronectin (all Sigma-Aldrich, St. Louis, MO, USA) at a density 

385 of 5000 cells per well on day 8 post transduction. After three weeks of maturation, the plates 

386 were carefully washed with Ringer buffer consisting of 130 mM NaCl, 5 mM KCl, 1 mM CaCl2, 

387 1 mM MgCl2, 2 mM KH2PO4, 20 mM HEPES and 5 mM glucose at pH 7.4. Measurements of 

388 intracellular calcium were performed after 1 hour incubation with Calcium 4 assay reagent 

389 (Molecular Devices, San Jose, CA, USA). Briefly, 1 minute baseline recording was followed by 

390 stepwise electrical stimulation at a constant voltage of 12V with 5 seconds stimulation each at 

391 2, 5, 10, 20 and 50 Hz in 2-minute intervals. Neuronal excitability was calculated by subtracting 

392 the baseline signal from maximal relative light units in response to electrical stimulation and 

393 normalizing the resulting value to the baseline.

394

395 Statistical analysis 
396 Biological assays were performed using the wildtype parental iPSC line and two heterozygous 

397 CUL3 knockout iPSC lines showing different deletions. In addition, two iPSC lines, which went 

398 through nucleofection and selection, but did not show genomic modifications, were included 

399 as controls. No statistical methods were used to predetermine sample size. However, the 

400 sample sizes in our study are similar to those reported in previous publications (Brennand KJ 

401 et al., 2011; Kizner V et al., 2019; Pak C et al., 2015) that showed significance. The sample 

402 sizes and the description of the sample collection are reported in the figure legends. For MEA 

403 recordings, FLIPR-based calcium imaging, and high-content microscopic screening, the cells 

404 were randomly assigned to the cell culture plates. For subsequent data acquisition, 

405 investigators were blinded with regard to the group category. 

406 Graph Pad Prism version 8 (GraphPad Software, San Diego, USA) was used for all statistical 

407 analyses and graphing. Inferential statistical strategies of continuous variables are based on 

408 parametric one-factorial or two- factorial linear models (Welch’s ANOVA or two-way ANOVA) 

409 followed by pairwise comparisons using a t-test modification according to Welch to account for 

410 unequal standard deviations in both groups. Discrete count data are analyzed using a non-

411 parametric, rank-based Kruskal-Wallis test followed by pairwise Mann-Whitney U tests. 

412 The significance level is set to 5% per hypothesis. P values in the figures are presented as 

413 follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Data are shown as mean ± standard 

414 error of the mean (SEM). In box-and whiskers plots the box depicts the median and the 25th 

415 and 75th quartiles, and the whiskers show the 5th and 95th percentile. Additional information 

416 on statistical analysis (e.g. degrees of freedom, statistic’s values, exact p-values) is given in 

417 Supplementary Table S2.
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418

419

420 RESULTS
421

422 Generation of CUL3 knockout iPSC lines and isogenic controls
423 CUL3 is a high risk gene for neuropsychiatric disorders (Codina-Sola M et al., 2015; 

424 Schizophrenia Working Group of the Psychiatric Genomics C, 2014), but little is known about 

425 its function in human neurons. To get a better insight into the role of CUL3 in human 

426 neurodevelopment, we investigated the consequences of CUL3 knockout (KO) in human iPSC 

427 and iPSC-derived cortical neurons. We used CRISPR/Cas9-mediated genome modification, 

428 which enables the generation of isogenic iPSC lines, thereby reducing genetic background 

429 heterogeneity and experimental variability (Jinek M et al., 2012; Kim HS et al., 2014). We 

430 selected the human iPSC line SB Ad3 clone 4 (abbreviated CB4), which has been generated 

431 and validated by the StemBancc consortium (Morrison M et al., 2015). Human iPSCs were 

432 nucleofected with plasmid vectors encoding Cas9 D10A nickase (Cas9n) and antisense 

433 gRNAs targeting exon 5 of the CUL3 gene. The Cas9n double-nicking approach was chosen, 

434 in order to increase target specificity and reduce off-target effects as shown by others (Ran FA 

435 et al., 2013). Guide RNA off-target analysis revealed 10 potentials off-targets showing ≥ 3 

436 mismatches and a low score. Importantly, there is no off-target pairing of these gRNAs closer 

437 than 1 kb to one another, such that the possibility of off-target DNA cleavage is considered to 

438 be negligible.  

439 Following nucleofection and puromycin selection, iPSC clones carrying CRISPR/Cas9n-

440 mediated insertions/deletions were identified by T7 endonuclease assay (Fig. 1A). Only iPSC 

441 clones showing a normal karyotype were included in subsequent analyses. By genomic DNA 

442 sequencing we detected a 3 base pair (bp) deletion in the heterozygous CUL3 KO iPSC clone 

443 6, and a 17 bp deletion in the heterozygous CUL3 KO iPSC clone 19 (Fig. 1C). According to 

444 UniProt Knowledgebase, either amino acid Glu202 or Glu203 of human Cullin-3 protein 

445 (Q13618) was deleted in clone 6. The 17 bp frameshift deletion in clone 19 is predicted to lead 

446 to a premature stop codon following amino acid 199 (p.Phe199X), which may result in 

447 nonsense-mediated mRNA decay (Chang YF et al., 2007) of the mutant transcript, or 

448 translation of a truncated, likely inactive Cullin-3 protein fragment from the mutant allele. Cullin-

449 3 has an N-terminal domain that comprises three repeats with five alpha-helix bundles each 

450 (Petroski MD and Deshaies RJ, 2005). Our modeling of the 3-dimensional protein structure of 

451 Cullin-3 using SWISS-MODEL and PyMOL software revealed that amino acids 202/203 are 

452 located in alpha-helix C of repeat 2 of the Cullin-repeat motif (Petroski MD and Deshaies RJ, 
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453 2005; Zheng N et al., 2002). Uniprot Knowledgebase also showed that amino acids Glu202 

454 and Glu203 are highly conserved between species. Moreover, a potentially deleterious, in-

455 frame deletion of Glu203 (variant 2:225378283 p.Glu203del) in human Cullin-3 has been 

456 reported by the Exome Aggregation Consortium (Lek M et al., 2016). Similar to CUL3 gene 

457 targeting in mice (Singer JD et al., 1999), we did not detect a homozygous CUL3 KO clone. In 

458 addition to the wildtype parental iPSC line CB4, two iPSC clones (clone 2 and clone 13), which 

459 went through CRISPR/Cas9 nucleofection, but did not show insertions/deletions, were 

460 included as controls in subsequent analyses.   

461 Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed an approximately 50% 

462 decrease in CUL3 mRNA expression in heterozygous CUL3 KO iPSC clones (Fig. 1B). 

463 Consistently, Cullin-3 protein levels were significantly reduced in heterozygous CUL3 KO 

464 iPSCs, as shown by immunoblot analyses using both a monoclonal anti-Cullin-3 antibody 

465 against the N-terminus of human Cullin-3, and a polyclonal anti-Cullin-3 antibody against the 

466 C-terminus (Fig. 2). In protein lysates from heterozygous CUL3 KO clone 19, a truncated 

467 Cullin-3 protein fragment was not detected, and the Cullin-3 protein band was shifted towards 

468 a slightly higher molecular weight (Fig. 2A). In addition, by total protein staining of the blots we 

469 did not detect protein bands with increased intensity in the heterozygous CUL3 KO iPSC lines 

470 (Fig. 2A). This suggests that a heterozygous loss of CUL3 has a moderate effect on protein 

471 ubiquitination/degradation, or that Cullin-3 preferentially acts on low abundance proteins that 

472 are not detectable by our protein stain.   

473

474 CUL3 deficiency does not affect stemness of human iPSCs
475 Since CUL3 is highly expressed in human iPSCs (Fig. 1B) (van de Leemput J et al., 2014), we 

476 investigated its potential role in stemness by immunostaining for marker proteins. Expression 

477 of the cell surface protein Tra1-60 and the nuclear protein Oct-4 was assessed in iPSC cultures 

478 by high-content digital image analysis (Fig. 3). More than 98% of the iPSCs were 

479 immunopositive for Oct-4 both in heterozygous CUL3 KO cultures (clones 6 and 19) and in 

480 isogenic controls (clones CB4, 2, and 13) (n = 11 wells per clone). Percentage of Tra1-60 

481 immunopositive cells did not significantly differ between the genotypes as well. Furthermore, 

482 high-content image analysis of the percentage of viable iPS cells showing Hoechst-positive, 

483 non-condensed/non-fragmented nuclei did not show significant differences between the 

484 genotypes, which indicates that cell viability and proliferation are unaltered.  

485

486 NPCs differentiated from heterozygous CUL3 knockout iPSCs exhibit a moderate 
487 increase in cell proliferation
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488 CUL3 deficiency in mouse embryonic fibroblasts resulted in an increased percentage of cells 

489 in S phase of the cell cycle (McEvoy JD et al., 2007). To examine the effect of CUL3 deficiency 

490 on proliferation of human iPSCs and NPCs, we analyzed incorporation of 5-ethynyl-2-

491 deoxyuridine (EdU) during DNA replication by high-content image analysis of cell cultures. The 

492 percentage of iPSCs showing EdU-positive nuclei showed a trend (p > 0.05) towards increased 

493 proliferation in the two heterozygous CUL3 KO clones compared to isogenic wildtype control 

494 clones (Fig. 4B). The percentage of NPCs showing EdU-positive nuclei was moderately, but 

495 significantly increased in the two heterozygous CUL3 KO clones compared to isogenic wildtype 

496 controls (Fig. 4B). Similar iPS cell proliferation and iPS cell density between the genotypes 

497 make an indirect effect on neural cell-fate commitment (Chambers SM et al., 2009) unlikely.

498  

499 PCR array analyses reveal increased mRNA expression of PAX6 in heterozygous CUL3 
500 KO NPC cultures and altered mRNA expression of neurotransmitter 
501 receptor/transporters in CUL3 KO neurons
502 To assess a potential function of Cullin-3 in human neurodevelopment more broadly, we 

503 analyzed mRNA expression of 84 genes regulating neurodevelopment using 96-well RT2 

504 Profiler PCR Arrays Human Neurogenesis. RNA extracts from the five NPC clones were 

505 analyzed using one PCR array each as described in detail in the Experimental Procedures 

506 section. Data analysis using the manufacturer’s online software showed a 5-fold and 4-fold 

507 increase in PAX6 mRNA levels in heterozygous CUL3 KO clones 6 and 19, respectively (Fig. 

508 5A), whereas expression of TENM1 mRNA decreased 2-fold. All other arrayed genes were not 

509 differentially expressed at a CT cut-off of 35 and a p-value threshold of 0.1. Since PCR array 

510 analysis generated only a single data point per transcript, we subsequently analyzed PAX6 

511 mRNA expression by qRT-PCR in order to demonstrate statistical significance. Consistent with 

512 data from PCR array analysis, PAX6 mRNA levels significantly increased approximately 3-fold 

513 in heterozygous CUL3 KO clones 6 and 9 compared to isogenic wildtype clones (Fig. 5A). 

514 Immunostaining of NPC cultures and digital image analysis also showed increased numbers 

515 of strongly Pax-6 immunofluorescent nuclei in heterozygous CUL3 KO clones, whereas Nestin 

516 immunofluorescence was unchanged (Fig. 5C).

517 Next, we analyzed expression of 92 neurotransmitter receptors/transporters in iPSC-derived 

518 cortical neurons after 2 weeks of differentiation/maturation using 96-well qPCR Arrays Human 

519 Neurotransmitter (as described in detail in the Experimental Procedures section). Data 

520 analysis using the manufacturer’s online software revealed a significant (p-value threshold 

521 0.05)  decrease in mRNA levels of the gamma-aminobutyric acid type A receptor gamma 1 

522 subunit (GABRG1), and the serotonin receptor 5-hydroxytryptamine receptor 2A (HTR2A) in 

523 heterozygous CUL3 KO iPSC-derived neurons. Notably, mRNA expression of the glutamate 
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524 transporter solute carrier family 1 member 3 (SLC1A3/EAAT1/GLAST1) showed a significant 

525 increase in CUL3 KO neuron cultures, which we confirmed by qRT-PCR (Fig. 5B). In the adult 

526 human brain, SLC1A3 is preferentially expressed in mature astrocytes (Hertz L and Zielke HR, 

527 2004), whereas in the developing human neocortex, SLC1A3 is expressed in proliferating 

528 radial glia cells (RGCs) and NPCs (Polioudakis D et al., 2019; Zhong S et al., 2018). Since 

529 GFAP-immunopositive astrocytes become detectable only after about 6 weeks of small 

530 molecule differentiation of human iPSCs in vitro ((Shi Y et al., 2012)  and present study), higher 

531 levels of the RGC/NPC marker PAX6 and SLC1A3 versus lower levels of neurotransmitter 

532 receptors may indicate a delay in transition from proliferating RGCs/NPCs to postmitotic 

533 neurons in CUL3 KO cultures. Higher PAX6 mRNA expression in CUL3 KO NPCs might also 

534 indicate an enhanced pallial fate in mutant NPCs. However, this seems unlikely, since mRNA 

535 levels of the pallial marker gene LHX2 (96.1% ± 4.8%) and the subpallial marker gene DLX1 

536 (107.3% ± 10.4%) were not significantly altered in heterozygous CUL3 KO NPC cultures 

537 compared to isogenic controls.

538      

539 CUL3 KO neuron cultures exhibit a decrease in spontaneous neuronal network activity 
540 and an appearance of neural rosettes following small molecule-mediated differentiation 
541 from iPSC 
542 To test neuronal function, we dot-seeded iPSC-derived immature neurons onto 24-well glass-

543 bottom, multi-electrode array (MEA) plates containing 12 electrodes per well. We recorded 

544 spontaneous electrical activity starting at day-in-vitro (div) 12 after seeding onto MEA plates, 

545 when action potential firing becomes detectable (Shi Y et al., 2012). At div 12 spike rate did 

546 not significantly differ between heterozygous CUL3 KO neuron cultures and isogenic wildtype 

547 controls (Fig. 6A). At div 23 spike rate in wildtype neuron cultures showed a trend towards an 

548 increase. Since neuronal differentiation/maturation using small molecules follows a more 

549 protracted time-course (Shi Y et al., 2012), this increase might become significant only at later 

550 time-points. More importantly, between div 19 and div 23 after seeding, we detected a massive 

551 decline in neuronal activity in the heterozygous CUL3 KO cultures. Bright-field microcopy of 

552 the glass-bottom MEA plates revealed the presence of numerous, radial-symmetric neural 

553 rosettes in CUL3 KO neuron cultures (inset Fig. 6A), which were not visible in isogenic controls. 

554 It may be hypothesized that these proliferating RGCs/NPCs overgrow the neuron cultures over 

555 time, and cause a decline in MEA signals by blocking contact to electrodes and/or by 

556 competing with neurons for essential medium nutrients.  

557 To confirm appearance of neural rosettes composed of RGCs/NPCs during maturation of 

558 CUL3 KO iPSC-derived neurons, we performed small molecule-mediated neuronal 

559 differentiation of our iPSC lines on 96-well plates. Following immunostaining for the NPC 
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560 marker Pax-6 and the neuronal marker Map-2 at div 23 after replating, we detected numerous 

561 Pax-6 immunopositive RGCs/NPCs forming neural rosettes in the heterozygous CUL3 KO 

562 cultures, whereas only Map-2 positive neurons were visible in all isogenic control cultures, as 

563 expected (Fig. 7A, B). Image analysis revealed a significantly higher density of neural rosettes 

564 in cultures from heterozygous CUL3 KO clones 6 and 19 compared to isogenic wildtypes (Fig. 

565 8). 

566 Cortical neurons differentiated from WT and CUL3 KO iPSC were also double immunostained 

567 for Map-2, and for vesicular glutamate transporter (vGlut-1), a marker for glutamatergic 

568 neurons. Consistent with published data (Shi Y et al., 2012), 88% – 93% of the Map-2 stained 

569 neurons were vGlut-1 positive glutamatergic neurons. High content image analysis did not 

570 detect significant differences between the genotypes. Finally, we analyzed the number of 

571 synaptic puncta labeled by the presynaptic marker, Synapsin 1/2 (Syn-1/2), and the 

572 postsynaptic marker, postsynaptic density protein 95 (Psd-95), which localize close to Map-2 

573 positive dendrites. High content image analysis revealed a significant reduction in Syn-1/2 

574 positive, presynaptic puncta per micrometer dendrite in cultures from heterozygous CUL3 KO 

575 clones 6 and 19 compared to isogenic wildtypes. (Fig. 9).

576

577 Heterozygous CUL3 KO neurons show decreased excitability following direct neuronal 
578 conversion from iPSCs
579 Several studies have demonstrated that lentiviral expression of the transcription factor 

580 Neurogenin-2 (NGN2) directly converts human iPSCs into a homogenous population of 

581 electrically-active, cortical glutamatergic neurons within 3 weeks (Nehme R et al., 2018; Zhang 

582 Y et al., 2013). NGN2-mediated direct neuronal conversion has already been used to analyze 

583 iPSC-models of various neuropsychiatric disorders (Pak C et al., 2015; Schafer ST et al., 2019; 

584 Zhang Y et al., 2013), and may be particularly useful for high throughput screening (Wang C 

585 et al., 2017). Moreover, CUL3 has been functionally annotated to non-coding, genetic risk 

586 variants for SZ by chromatin conformation capture assays using NGN2-induced neurons 

587 (Rajarajan P et al., 2018). Therefore, we transduced the heterozygous CUL3 KO iPSC lines 

588 and the isogenic control lines with a lentivirus encoding NGN2 in a second set of experiments.

589 Eight days after lentivirus transduction, cells were dot-seeded onto 24-well glass-bottom, MEA 

590 plates. We started recording spontaneous electrical activity at div 14 after dot-seeding, when 

591 spontaneous firing becomes detectable in NGN2-induced neurons (Nehme R et al., 2018; 

592 Zhang Y et al., 2013). Spike rate steadily increased both in heterozygous CUL3 KO neuron 

593 cultures and in isogenic wildtype control cultures following direct neuronal conversion (Fig. 6B). 

594 By multi-parametric analysis of spontaneous spikes, bursts, and network bursts, we could not 

595 detect significant differences in NGN2-induced CUL3 KO versus WT neuron cultures (Fig. 6C). 
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596 By bright-field microscopy of the glass-bottom MEA plates, neural rosettes were not visible in 

597 CUL3 KO cultures and in controls. In parallel, iPSC lines were directly converted into 

598 glutamatergic neurons on 96-well cell culture plates. Following immunostaining for the 

599 RGC/NPC marker Pax-6 and the neuronal marker Map-2 at div 27, only Map-2 positive 

600 neurons were detectable both in heterozygous CUL3 KO cultures and in isogenic wildtype 

601 controls (Fig. 7C, D).

602 By qRT-PCR we could detect only negligible levels of SLC1A3 mRNA expression (mean CT > 

603 35.0) in cortical neurons following NGN2-mediated direct neuronal conversion from iPSCs, 

604 which is consistent with RNA-sequencing data published by others (Tian R et al., 2019), and 

605 confirms that RGCs/NPCs are absent (Zhang Y et al., 2013). However, we detected a robust 

606 expression of CUL3 transcripts in induced wildtype neurons, which significantly decreased by 

607 approximately 50% in induced CUL3 KO neurons.

608 To analyze evoked neuronal excitability, we transduced our iPSC lines with lentiviral NGN2 

609 and a lentiviral vector encoding channelrhodopsin-2 (ChR2), which allows artifact-free, 

610 optogenetic stimulation of induced neurons on MEA plates (Clements IP et al., 2016). 

611 Exposure of ChR2 expressing neurons on MEA plates to ten brief blue light pulses (50 ms, 

612 470 nm) elicited time-locked spikes, as shown by the raster plots in Fig. 10A. As expected, 

613 exposure of transduced neurons to red light (50 ms, 590 nm) or light exposure of non-

614 transduced neurons did not elicit any neuronal response (not shown). More importantly, the 

615 increase in spike rate following optogenetic stimulation at increasing light intensity was 

616 significantly smaller in heterozygous CUL3 KO neuron cultures compared to isogenic WT 

617 control cultures (Fig. 10B). Furthermore, at the highest light intensity, evoked activity declined 

618 in CUL3 KO cultures after 5 light pulses (Fig. 10A). Electrical stimulation and calcium imaging 

619 on a fluorometric imaging plate reader (FLIPR Tetra) confirmed decreased excitability of 

620 NGN2-induced CUL3 KO neurons (Fig. 10C), thus showing that hypoexcitability does not 

621 depend on the stimulation paradigm or the read-out.

622

623 Analysis of RhoA, Notch, and FGF signaling in CUL3 KO NPCs 
624 Finally, we tried to identify the protein substrates and signaling pathways, which may be 

625 affected by Cullin-3 deficiency, and which may underlie the maintenance of the RGC/NPC 

626 stage in heterozygous CUL3 KO cultures. In non-neuronal human HeLa cells, CUL3 

627 knockdown by small hairpin RNA led to an impaired ubiquitination and degradation of the small 

628 GTPase RhoA (Chen Y et al., 2009). Moreover, network analysis implicated a Cullin-3/RhoA 

629 pathway in human brain development and psychiatric diseases (Lin GN et al., 2015). By 

630 immunoblot analysis we detected similar levels of RhoA protein in heterozygous CUL3 KO 
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631 iPSCs/NPCs and isogenic controls (Fig. 11A), speaking against a major contribution of altered 

632 RhoA signaling in our iPSC model.

633 During mammalian brain development, Notch receptor signaling is required to maintain NPCs 

634 in an undifferentiated, self-renewing state. Following ligand binding and receptor proteolysis, 

635 the Notch intracellular domain activates target genes of the HES/HEY families, which 

636 subsequently suppress the expression of proneuronal genes (reviewed in (Pierfelice T et al., 

637 2011)). Conditional deletion of the Cullin-1 adaptor protein Fbxw7 leads to an accumulation of 

638 Notch protein and HES5/HEY1/HEY2 transcripts in the embryonic mouse brain, demonstrating 

639 that Notch signaling during mammalian neurodevelopment is controlled by Cullin ubiquitin 

640 ligases (Matsumoto A et al., 2011). By qRT-PCR we detected similar levels of HES5/HEY1 

641 mRNA in heterozygous CUL3 KO NPCs and isogenic WT controls, giving indirect evidence 

642 that the maintenance of RGCs/NPCs in CUL3 KO cultures during small molecule-mediated 

643 neuronal differentiation is not caused by enhanced Notch signaling. It should be noted, that we 

644 cultured proliferating NPCs in the absence of the Notch inhibitor DAPT (see Experimental 

645 Procedures), and thus, an effect of Cullin-3 deficiency on endogenous Notch signaling should 

646 be detectable by changes in Notch target gene expression.

647 Fibroblast growth factors (FGFs) are crucial for maintenance of NPCs in the developing 

648 forebrain (reviewed in (Guillemot F and Zimmer C, 2011; Mason I, 2007)), and recombinant 

649 FGF2 was added to our NPC cultures to promote proliferation and self-renewal. FGF signaling 

650 is regulated by ubiquitylation and targeted degradation of the activated FGF receptor by the 

651 ubiquitin ligase Cbl. Downstream MAPK signaling is particularly important for the mitogenic 

652 activity of FGFs. The MAPK cascade triggers transcriptional activation of effectors (e.g. ETV1, 

653 CREB1) and feedback inhibitors (e.g. SPRY1, IL17RD/SEF) of FGF receptor signaling 

654 (reviewed in (Guillemot F and Zimmer C, 2011; Mason I, 2007)). Interestingly, we detected 

655 significantly decreased mRNA levels of the feedback inhibitors SPRY1 and IL17RD/SEF in 

656 heterozygous CUL3 KO NPCs, while mRNA levels of the effectors remained unchanged (Fig. 

657 11B). 

658

659

660 DISCUSSION
661 Cullin-3 is an E3 ubiquitin ligase that ubiquitylates numerous protein substrates by binding to 

662 diverse adaptor proteins (reviewed in (Petroski MD and Deshaies RJ, 2005)). Cullin-3 

663 complexes catalyze both proteolytic and non-proteolytic ubiquitin signals, thereby regulating 

664 many fundamental biological processes, like cell division, embryonic development, DNA 

665 synthesis/repair, and cytoskeleton dynamics. Not surprisingly, loss-of-function mutations in 

666 CUL3 or its adaptor proteins are linked to severe human diseases, including metabolic 
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667 disorders, muscle/nerve degeneration, and cancer (reviewed in (Genschik P et al., 2013; 

668 Jerabkova K and Sumara I, 2018)). Moreover, the CUL3 gene is listed as one of the 23 top 

669 ranking, high confidence risk genes for autism spectrum disorder (ASD) in the SFARI Gene 

670 database (gene.safari.org/database). Rare, protein-truncating mutations in the CUL3 gene 

671 (e.g. p.Ser133X, p.Glu246X, p.Arg546X) were detected by independent sequencing studies in 

672 large cohorts of ASD families (da Silva Montenegro EM et al., 2019; Kong A et al., 2012; 

673 O'Roak BJ et al., 2012; Ruzzo EK et al., 2019). Unfortunately, clinical records of the mutation 

674 carriers were not reported. Large GWAS of schizophrenia have identified common, low risk 

675 genetic variants, most of them in intronic or intergenic regions of the human genome (Pardinas 

676 AF et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics C, 2014). For 

677 functional annotation of these non-coding risk loci to causal genes, open chromatin profiling 

678 and chromosome interaction mapping were performed using both human brain tissue and 

679 iPSC-derived NPCs/neurons (Forrest MP et al., 2017; Li M et al., 2018; Rajarajan P et al., 

680 2018). NPCs/neurons were derived from human iPSC using either small molecules or direct 

681 conversion, as in the present study. Notably, CUL3 was identified in chromosomal contacts 

682 anchored to SZ risk loci both in NPCs and in neurons (Rajarajan P et al., 2018; Song M et al., 

683 2019), indicating that iPSC-derived human NPCs/neurons are well-suited to elucidate the 

684 (patho-)physiological function of Cullin-3. Whether these non-coding, gene-regulatory risk 

685 variants up- or down-regulate CUL3 gene expression, remains to be tested. Furthermore, 

686 analysis of gene coexpression modules identified CUL3 in a module (ME2) that is highly 

687 expressed in the prenatal human brain and enriched in RGCs/NPCs/neurons (Li M et al., 2018). 

688 These findings are consistent with prior network analyses of ASD risk genes including CUL3 

689 (Lin GN et al., 2015; Willsey AJ et al., 2013), and suggest that these risk variants for ASD/SZ 

690 may disrupt neurodevelopmental processes.

691 The function of Cullin-3 in the nervous system has been investigated mainly in non-mammalian 

692 species. In Drosophila melanogaster, a splicing mutation in CUL3 caused a massive defect in 

693 neurite elongation of mushroom body neurons (Zhu S et al., 2005), and a genetic screen 

694 identified a role for Cullin-3 in presynaptic homeostatic potentiation in the neuromuscular 

695 junction (Kikuma K et al., 2019). In the nematode Caenorhabditis elegans, both an 

696 endogenous protein-truncating mutation in the Cullin-3 adaptor protein KEL-8 and transgenic 

697 overexpression of dominant negative Cullin-3 fragments resulted in decreased synaptic 

698 turnover of AMPA-type glutamate receptor subunits (Schaefer H and Rongo C, 2006). By 

699 contrast, levels of AMPA receptor subunits were unchanged in synaptosome preparations from 

700 heterozygous CUL3 knockout mouse brains, while kainate receptor subunits accumulated by 

701 about 20% (Salinas GD et al., 2006). Little is known about the function of Cullin-3 in human 

702 neurodevelopment. Knockdown of the Cullin-3 adaptor KBTBD8 by short hairpin RNA in 
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703 human embryonic stem cell cultures did not affect proliferation or pluripotency. Following small 

704 molecule-mediated neural differentiation however, knockdown of KBTBD8 resulted in an 

705 increase in CNS neuronal precursor cells and a decline in neural crest cells (Werner A et al., 

706 2015).              

707 Since fibroblasts from psychiatric patients carrying rare, protein-truncating mutations in the 

708 CUL3 gene were not available for reprogramming, we used CRISPR/Cas9 nickase to knockout 

709 CUL3 in human iPSCs from healthy donors. This approach generates isogenic iPSC lines, 

710 thereby minimizing genetic background heterogeneity (Jinek M et al., 2012; Kim HS et al., 

711 2014), and reduces off-target effects observed with Cas9 nuclease (Ran FA et al., 2013). By 

712 DNA sequencing, we detected a 3 bp, in-frame deletion in iPSC clone 6, and a 17 bp deletion 

713 in clone 19. Consistent with CUL3 gene targeting in mice (Singer JD et al., 1999), we detected 

714 only heterozygous CUL3 KO iPSC lines. The 17 bp, frameshift deletion in clone 19 is predicted 

715 to lead to a premature stop codon (p.Phe199X), which may result in nonsense-mediated 

716 mRNA decay (Chang YF et al., 2007) of the mutant CUL3 transcript. By contrast, the decrease 

717 in CUL3 mRNA in clone 6 carrying a 3 bp in-frame deletion, is surprising. According to three-

718 dimensional models of the protein structure of Cullin E3 ligases (Petroski MD and Deshaies 

719 RJ, 2005; Zheng N et al., 2002), the single amino acid (Glu202 or Glu203) deletion of clone 6 

720 is located in an alpha-helix of the Cullin repeat motif. Moreover, amino acids Glu202 and 

721 Glu203 are highly conserved between species. The N-terminal Cullin repeats have a rigid 

722 structure, which is required to juxtapose the protein substrate and the E2 enzyme for ubiquitin 

723 transfer, since mutations that increase flexibility destroyed Cullin E3 activity (Petroski MD and 

724 Deshaies RJ, 2005; Zheng N et al., 2002). It may be hypothesized, that deletion of Glu202 or 

725 Glu203 has a deleterious effect on the structure/rigidity of the Cullin repeat, and consequently 

726 the stability/activity of Cullin-3 (Schumacher FR et al., 2015). Interestingly, similar findings 

727 have been published in the non-related protein Kindlin-1, where an in-frame deletion of a single 

728 amino acid in a highly structured region affected protein structure and led to a massive 

729 reduction of mRNA and protein (Maier K et al., 2016). By immunoblot analyses using two 

730 different anti-Cullin-3 antibodies, we detected an approximate 50% reduction in Cullin-3 protein 

731 levels in the two heterozygous CUL3 KO iPSC clones, and a Cullin-3 band migrating at a 

732 slightly higher molecular weight in CUL3 KO clone 19. It may be speculated that the reduction 

733 in Cullin-3 protein in heterozygous CUL3 KO iPSC leads to an increase in post-translational 

734 modifications (e.g. neddylation, autoubiquitylation) of Cullin-3 encoded by the wildtype allele 

735 (Genschik P et al., 2013; Petroski MD and Deshaies RJ, 2005). Alternatively, structural 

736 changes in the mutant Cullin-3 protein may increase neddylation and autoubiquitinylation as 

737 shown by others (Schumacher FR et al., 2015). It remains unclear however, why the shift in 

738 the Cullin-3 protein band is not detectable in the heterozygous CUL3 KO clone 6. An about 
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739 50% neddylation of Cullin-3 has been detected in mouse embryonic stem cells plated on 

740 gelatin using a different antibody (Jin L et al., 2012). Our immunoblot analyses suggest that 

741 the basal levels of neddylated Cullin-3 are lower in human iPSCs plated on Matrigel. In addition, 

742 differential splicing of CUL3, which has recently been demonstrated both in human NPC 

743 cultures and in the mouse forebrain (Burke EE et al., 2020; Furlanis E et al., 2019), might 

744 contribute to the shift of the Cullin-3 band in our immunoblot analysis.   

745 Although CUL3 mRNA is expressed in human iPSCs ((van de Leemput J et al., 2014) and 

746 present study), our heterozygous KO of CUL3 by Cas9 nickase did not affect expression of 

747 various markers for pluripotency, which is consistent with unaltered expression of pluripotency 

748 markers in mouse embryonic stem cells depleted of CUL3 by short interfering RNA treatment 

749 (Jin L et al., 2012). Messenger RNA expression of CUL3 remains at high levels during small 

750 molecule-mediated neuronal differentiation of iPSC ((van de Leemput J et al., 2014) and 

751 present study). At the NPC stage, we detected a moderate increase in cell proliferation of the 

752 three CUL3 KO clones by EdU labeling during DNA replication, which is consistent with 

753 findings in embryonic fibroblasts from heterozygous CUL3 KO mice (McEvoy JD et al., 2007).

754 To profile expression of genes regulating neuronal development and function, we used 96-well 

755 qPCR arrays. Bulk or single cell RNA-sequencing will be required however, to get a more 

756 complete picture of changes in gene expression and signaling pathways induced by Cullin-3 

757 deficiency. Both by PCR Human Neurogenesis arrays and by qRT-PCR, we detected an 

758 approximate 3-fold increase in PAX6 mRNA levels in heterozygous CUL3 KO NPCs derived 

759 from clone 6 and clone 19. In the embryonic mouse cortex, PAX6 plays an essential role in the 

760 differentiation of radial glia cells (RGCs) (Gotz M et al., 1998), and in cultured mouse 

761 embryonic stem cells, PAX6 knockdown decreased differentiation of neuroepithelial cells to 

762 RGCs (Suter DM et al., 2009). Additionally, we found a moderate decrease in TENM1 mRNA 

763 expression. The protein product, teneurin-1, has a role in synapse organization and neurite 

764 elongation in mice (reviewed in (Mosca TJ, 2015)). By PCR Human Neurotransmitter array 

765 analysis and by qRT-PCR of 14 days old, iPSC-derived neurons, we found a > 3-fold increase 

766 in mRNA levels of the glutamate transporter, solute carrier family 1 member 3 (SLC1A3), in 

767 heterozygous CUL3 KO neurons derived from clone 6 and clone 19. SLC1A3 (EAAT1, 

768 GLAST1) is best known as the astrocytic glutamate transporter, which takes up the 

769 neurotransmitter glutamate after release from neuronal synapses (Hertz L and Zielke HR, 

770 2004). In our iPSC-derived neuron cultures however, astrocytes become detectable only after 

771 45 days of small molecule differentiation ((Shi Y et al., 2012) and present study). By single cell 

772 RNA sequencing of the developing human neocortex, independent studies demonstrated 

773 preferential expression of SLC1A3 in proliferating RGCs and NPCs (Johnson MB et al., 2015; 

774 Polioudakis D et al., 2019; Zhong S et al., 2018). Thus, higher mRNA levels of the RGC/NPC 
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775 markers PAX6 and SLC1A3 in our heterozygous CUL3 KO cultures may indicate that these 

776 cells are retained in the RGC/NPC stage during small molecule-mediated neuronal 

777 differentiation. Consistently, we observed an appearance of Pax-6 positive NPCs forming 

778 neural rosettes in CUL3 KO neuron cultures. These proliferating CUL3 KO RGCs/NPCs 

779 overgrow the neuron cultures, which resulted in a (seeming) decline in neuronal electrical 

780 activity during our MEA recordings. Higher levels of PAX6 mRNA expression and higher 

781 numbers of Pax6-positive RGCs/NPCs in heterozygous CUL3 KO clone 8 compared to KO 

782 clone 19 might be partially explained by lower levels of CUL3 protein expression and protein 

783 modification in clone 8. However, since genomic instability has been reported in several iPSC 

784 studies (reviewed in (Drakulic D et al., 2020)), we cannot formally exclude a contribution by 

785 small genomic alterations that escaped detection by our array-based karyotype analysis and 

786 that can only be ruled out by whole genome sequencing. It should be noted, that we did not 

787 add antimitotic agents, like cytosine arabinoside (Ara-C), to our cultures of iPSC-derived 

788 neurons. Ara-C has been added to the medium in other iPSC studies to inhibit proliferation of 

789 non-neuronal cells and cocultured astrocytes, but Ara-C may also prevent growth of persisting 

790 RGCs/NPCs during neuronal differentiation in iPSC models of neurodevelopmental disorders.

791 Increased expression of marker genes for immature neurons, a decrease in spontaneous 

792 neuronal network activity over time, and impaired synaptic plasticity were also detected in 

793 iPSC-derived cortical neurons of patients diagnosed with ASD, Angelman syndrome, and 

794 childhood-onset schizophrenia, respectively (Fink JJ et al., 2017; Flaherty E et al., 2019; 

795 Marchetto MC et al., 2017). Taken together, there is increasing evidence that deficits in 

796 neuronal differentiation are a point of convergence in iPSC models of 

797 neurodevelopmental/neuropsychiatric disorders (reviewed in (Ahmad R et al., 2018; Ernst C, 

798 2016; Ichida JK and Kiskinis E, 2015)). These neurodevelopmental deficits may be 

799 exacerbated (e.g. overgrowth of iPSC-derived neurons by persisting RGCs/NPCs in the 

800 present study) in iPSC models grown in two-dimensional culture on exogenous extracellular 

801 matrix, however, numerous neuropathological studies of postmortem cortical tissue from 

802 autistic children revealed signs of extended neurogenesis, neuronal immaturity, and abnormal 

803 migration consistent with dysregulation of neuronal differentiation at prenatal stages (Kaushik 

804 G and Zarbalis KS, 2016; Stoner R et al., 2014; Wegiel J et al., 2010). 

805 Lentiviral expression of the neuralizing transcription factor NGN2 directly converts human 

806 iPSCs into cortical glutamatergic neurons and appears to circumvent the NPC stage (Zhang Y 

807 et al., 2013). By RNA sequencing robust CUL3 expression has been demonstrated at all time-

808 points of direct neuronal conversion, while SLC1A3 expression could not be detected ((Tian R 

809 et al., 2019) and present study). Overexpression of NGN2 in RGCs of the developing ferret 

810 cortex shifts RGCs into postmitotic neurons (Johnson MB et al., 2015). These data might 
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811 explain, why the persistence of RGCs/NPCs in CUL3 KO cultures during small molecule-

812 mediated neuronal differentiation was not observed during NGN2-mediated direct neuronal 

813 conversion in our study. Our findings also sound a note of caution. Risk genes for 

814 neurodevelopmental/neuropsychiatric disorders are significantly enriched in RGCs/NPCs of 

815 the prenatal human neocortex (Polioudakis D et al., 2019; Schork AJ et al., 2019), and non-

816 coding risk variants have been identified in human-specific enhancers that regulate the 

817 proliferation of outer RGCs. This cell type is particularly important for the evolutionary 

818 expansion of the human neocortex and the increased cognitive abilities of humans (de la Torre-

819 Ubieta L et al., 2018). Therefore, disease-relevant, early neurodevelopmental alterations 

820 induced by these risk genes in iPSC models may be obscured by direct neuronal conversion, 

821 which bypasses the RGC/NPC stage. Similar findings have recently been reported in iPSCs 

822 from idiopathic, macrocephalic ASD patients, where NGN2-mediated direct conversion 

823 attenuated ASD-associated accelerated neurite outgrowth observed during small molecule 

824 differentiation (Schafer ST et al., 2019).

825 However, non-coding common variants for SZ form contacts with the CUL3 gene in NGN2-

826 induced neurons (Rajarajan P et al., 2018) indicating that (patho-)physiological neuronal 

827 functions of Cullin-3 can be identified in induced cortical glutamatergic neurons. Although our 

828 multiparametric analysis of MEA recordings did not reveal significant differences in 

829 spontaneous spikes, bursts, and networks bursts between induced CUL3 KO neurons and 

830 isogenic controls, both optogenetic stimulation combined with MEA recordings and electrical 

831 stimulation combined with calcium imaging demonstrated a significant decrease in neuronal 

832 excitability. The rapid decline in evoked activity in CUL3 KO neurons after 5 light pulses may 

833 indicate enhanced short-term synaptic depression and/or accelerated depletion of readily 

834 releasable synaptic vesicles in glutamatergic synapses. Consistently, normal basal synaptic 

835 transmission and altered short-term synaptic plasticity have been reported in cortical pyramidal 

836 neurons of various genetic mouse models of SZ/ASD (reviewed in (Crabtree GW and Gogos 

837 JA, 2014)). Very recently, decreased excitability and spine loss has also been detected in 

838 cortical pyramidal neurons of heterozygous mice with forebrain-specific CUL3 deletion 

839 (Rapanelli M et al., 2019). Thus, both human iPSC models and mutant mouse models exhibit 

840 deficits in cortical glutamatergic signaling, which may represent one of the earliest 

841 pathophysiological alteration in schizophrenia (Krystal JH et al., 2017).

842 Signaling via both the Notch receptor and the FGF receptor is crucial for maintenance of NPCs 

843 in an undifferentiated, self-renewing state (reviewed in (Guillemot F and Zimmer C, 2011; 

844 Mason I, 2007; Pierfelice T et al., 2011)). Since both signaling cascades are regulated by Cullin 

845 E3 ligases (Guillemot F and Zimmer C, 2011; Mason I, 2007; Matsumoto A et al., 2011), we 

846 investigated the expression of known target genes of Notch and FGF, respectively, in 
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847 proliferating NPC cultures. While Notch target gene expression was unaltered in heterozygous 

848 CUL3 KO NPCs, expression of feedback inhibitors of FGF signaling (SPRY1, IL17RD) was 

849 significantly reduced. Interestingly, human brain-specific gene network analysis identified 

850 FGF1 and FGFR2 as key intermediate genes linking high confidence ASD genes to disorder-

851 related pathways (Krishnan A et al., 2016). Moreover, by gene expression profiling increased 

852 FGF2 mRNA expression was detected in the temporal cortex of autism patients (Garbett K et 

853 al., 2008). Although further studies are required to clarify whether Cullin-3 deficiency directly 

854 or indirectly affects FGF signaling, our study indicates that Cullin-3 ubiquitin ligase regulates 

855 differentiation of human cortical RGCs/NPCs, which might contribute to the 

856 neurodevelopmental deficits in psychiatric disorders associated with CUL3 loss-of-function 

857 mutations.

858
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1135 Figure Legends
1136

1137 Fig. 1. CRISPR/Cas9 nickase mediated CUL3 knockout in human induced pluripotent stem 

1138 cells. (A) Identification of CRISPR/Cas9 nickase induced insertions/deletions in the CUL3 gene 

1139 by T7 endonuclease cleavage assay. M, DNA marker; +/+_4, wildtype, parental control iPSC 

1140 line CB4; +/+_2 and +/+_13, Cas9/gRNA-transfected, non-edited, wildtype iPSC clones 2 and 

1141 13, respectively; +/-_6 and +/-_19, Cas9/gRNA-transfected, heterozygous CUL3 knockout (KO) 

1142 clones 6 and 19, respectively. (B) Quantitative RT-PCR analysis shows significantly decreased 

1143 CUL3 mRNA expression in heterozygous CUL3 KO iPSC clones 6 and 19 (black boxes) 

1144 compared to isogenic wildtype iPSC clones. Data from two independent experiments and three 

1145 iPSC cultures per clone are shown in box-and whiskers plots. The box depicts the median and 

1146 the 25th and 75th quartiles, and the whiskers show the 5th and 95th percentile. **p ≤ 0.01, ***p 

1147 ≤ 0.001, unpaired Welch’s t-tests. Additional information on statistical analysis is given in 

1148 Supplementary Table S2. (C) DNA sequencing reveals an in-frame, 3 base pair deletion in 

1149 heterozygous CUL3 KO iPSC clone 6 (+/-_6), and a 17 base pair deletion in heterozygous 

1150 CUL3 KO iPSC clone 19 (+/-_19). 

1151

1152 Fig. 2. Immunoblot analysis of Cullin-3 protein levels in iPSC lysates. (A) Representative 

1153 immunoblots showing a decrease in Cullin-3 protein (black arrow) in heterozygous CUL3 KO 

1154 iPSC, and a shift in the Cullin-3 band towards a higher molecular weight in heterozygous CUL3 

1155 KO clone 19. M, protein markers (colorimetric detection); +/+_4, wildtype, parental control 

1156 iPSC line CB4; +/+_2 and +/+_13, Cas9/gRNA-transfected, non-edited, wildtype iPSC clones 

1157 2 and 13, respectively; +/-_6 and +/-_19, Cas9/gRNA-transfected, heterozygous CUL3 

1158 knockout (KO) clones 6 and 19, respectively. Both a monoclonal anti-Cullin-3 antibody raised 

1159 against the N-terminus of human Cullin-3 (upper panel) and a polyclonal anti-Cullin-3 antibody 

1160 raised against the C-terminus of human Cullin-3 were used for chemiluminescence detection. 

1161 Immunoblot analysis of beta-Actin (lower panel) and reversible total protein staining of the 

1162 membrane (panel on the right) confirm similar protein loading. (B) Densitometric analysis of all 

1163 immunoblots shows a significant decrease in Cullin-3 protein levels in heterozygous CUL3 KO 

1164 iPSC lines (black boxes) compared to isogenic WT control lines. Data from four independent 

1165 experiments are shown in box-and whiskers plots. The box depicts the median and the 25th 

1166 and 75th quartiles, and the whiskers show the 5th and 95th percentile. *p ≤ 0.05, **p ≤ 0.01, 

1167 unpaired Welch’s t-tests. Additional information on statistical analysis is given in 

1168 Supplementary Table S2.

1169
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1170 Fig. 3. CUL3 deficiency does not affect stemness of iPSC lines. Representative microscopic 

1171 images of immunostainings for stemness markers Oct-4 and Tra-1-60 in iPSC cultures. Nuclei 

1172 were stained with Hoechst 33342 and confocal images were analyzed using an Opera Phenix 

1173 high-content image analysis system. Scale bars represent 100 µm. Data are given in the 

1174 Results section.

1175

1176 Fig. 4. Effect of CUL3 deficiency on cell proliferation. (A) Representative example of digital 

1177 image analysis of EdU-positive nuclei (green) in iPSC cultures. Nuclei were also stained with 

1178 Hoechst 33342 dye (blue). Segmentation of the original microscopic image by Columbus 

1179 software is shown from left to right (all nuclei, valid nuclei, EdU-positive and valid nuclei). (B) 

1180 A trend towards increased proliferation is visible in heterozygous CUL3 KO (+/-) iPSC cultures 

1181 compared to isogenic wildtype (+/+) control cultures (left histogram). A significant increase in 

1182 proliferation is detectable in heterozygous CUL3 KO (+/-) NPC cultures (right histogram). 

1183 t(13.61) = 3.99, **p ≤ 0.01, unpaired Welch’s t-test. Data from 3-4 cultures per clone are shown 

1184 in box-and whiskers plots. The box depicts the median and the 25th and 75th quartiles, and 

1185 the whiskers show the 5th and 95th percentile. Scale bar represents 100 µm.

1186

1187 Fig. 5. (A) Histograms showing increased mRNA expression of the NPC marker PAX6 in NPC 

1188 cultures of heterozygous CUL3 KO clones 6 and 19 (black bars), as detected by PCR array 

1189 analysis (left panel) and qRT-PCR (right panel), respectively. **p ≤ 0.01, ***p ≤ 0.001, unpaired 

1190 Welch’s t-tests. (B) Histograms showing increased mRNA expression of SLC1A3, a marker for 

1191 radial glia cells and NPCs, in iPSC-derived neuron cultures from heterozygous CUL3 KO 

1192 clones 6 and 19 (black bars), as detected by PCR array analysis (left panel) and qRT-PCR 

1193 (right panel), respectively. **p ≤ 0.01, ****p ≤ 0.0001, unpaired Welch’s t-tests. (C) 

1194 Immunostaining of NPC cultures and digital image analysis reveal significantly increased 

1195 numbers of strongly Pax-6 immunofluorescent cells (green) in heterozygous CUL3 KO clones 

1196 6 and 19, whereas Nestin immunofluorescence (red) is unchanged. **p ≤ 0.01, unpaired 

1197 Welch’s t-tests. Quantitative RT-PCR and image analyses were performed using three cultures 

1198 per clone. Histograms show mean ± SEM, and data points superimposed on the bars. 

1199 Additional information on statistical analysis is given in Supplementary Table S2.

1200

1201 Fig. 6. Analysis of spontaneous electrical activity of iPSC-derived neurons using multi-

1202 electrode array (MEA) recordings. Human iPSC-derived neurons were dot-seeded onto 24-

1203 well, glass-bottom MEA plates following differentiation into cortical glutamatergic neurons 

1204 either by small molecules (A) or by lentiviral NGN2 expression (B, C). (A) Wildtype iPSC-
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1205 derived neurons did not show a significant change in spontaneous activity from div 12 to div 

1206 23 after seeding, whereas heterozygous CUL3 KO clones 6 and 19 show a significant 

1207 decrease in activity over time. ****p ≤ 0.0001, unpaired Welch’s t-tests. The inset shows two 

1208 neural rosettes (encircled) near an electrode (black) detected by bright field microscopy of the 

1209 MEA plate. (B) Following NGN2-mediated direct neuronal conversion from iPSC, both wildtype 

1210 iPSC-derived neurons and heterozygous CUL3 KO neurons exhibit a steady increase in 

1211 spontaneous electrical activity during neuronal maturation. Data are shown in box-and 

1212 whiskers plots. The box depicts the median and the 25th and 75th quartiles, and the whiskers 

1213 show the 5th and 95th percentile. Detailed data analysis of (B) is shown in (C). (C) Multi-

1214 parametric analysis of spontaneous spikes, bursts, and network bursts during MEA recordings 

1215 of induced wildtype neurons (from iPSC clones CB4, 2, and 13) and induced heterozygous 

1216 CUL3 KO neurons (from clones 6 and 19) at various time-points (div 14, div 20, and div 27) 

1217 after seeding onto MEA plates. a: spike rate (Hz); b: burst count; c: mean burst duration (s); d: 

1218 mean burst spike count; e: mean burst spike rate (10Hz); f: spikes in bursts (%); g: mean 

1219 interburst interval (s); h: spikes in network bursts (%). All parameters analyzed did not 

1220 significantly differ between heterozygous CUL3 KO and wildtype neuron cultures following 

1221 direct neuronal conversion from iPSC. Data from two independent MEA experiments, each 

1222 comprising three cultures per clone. Additional information on statistical analysis is given in 

1223 Supplementary Table S2.

1224

1225 Fig. 7. Immuofluorescent stainings for the neuron marker Map-2 (white) and the NPC marker 

1226 Pax-6 (green) in neuron cultures derived from iPSCs. Human iPSCs were differentiated into 

1227 cortical glutamatergic neurons using either small molecules (A, B), or lentiviral overexpression 

1228 of Neurogenin-2 (NGN2) (C, D). Representative microscopic images show large clusters 

1229 (neural rosettes) of Pax-6 positive NPCs in heterozygous CUL3 KO neuron cultures from clone 

1230 6 following small molecule-mediated neuronal differentiation (A), but not following NGN2-

1231 mediated direct neuronal conversion (C). Exclusively Map-2 positive neurons are visible in 

1232 wildtype control cultures from clone CB4, as expected (B, D). Scale bars represent 100 µm. 

1233 Overview images and quantitative analysis are shown in Fig. 8.

1234

1235 Fig. 8.  Immuofluorescent stainings for the neuron marker Map-2 (red) and nuclear labeling 

1236 using Hoechst 33342 dye (blue). Human iPSCs were differentiated into cortical glutamatergic 

1237 neurons using small molecules. Representative composite microscopic images from Opera 

1238 Phenix imaging system show numerous radial-symmetric neural rosettes in heterozygous 

1239 CUL3 KO neuron cultures from clones 6 and 19. Exclusively Map-2 positive neurons are visible 

1240 in wildtype control cultures. Scale bar represents 100 µm. Quantitative analysis of the number 
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1241 of neural rosettes per region of interest (ROI) is shown in the box-and whiskers plot. The box 

1242 depicts the median and the 25th and 75th quartiles, and the whiskers show the 5th and 95th 

1243 percentile. ****p ≤ 0.0001, Kruskal Wallis test followed by pairwise Mann-Whitney U tests. Five 

1244 ROIs per well and 10 wells per clone were analyzed. Additional information on statistical 

1245 analysis is given in Supplementary Table S2.

1246

1247 Fig. 9. High-content image analyis of synaptic puncta labeled by the presynaptic marker, 

1248 synapsin 1/2 (Syn-1/2), and the postsynaptic marker, postsynaptic density protein 95 (Psd-95), 

1249 which are located close to Map-2 positive dendrites. (A, upper row) Detection of Map-2 

1250 immunoreactive (red) valid dendrites, and Syn-1/2 immunopositive (green) presynaptic puncta 

1251 by Columbus software. (A, lower row) Representative microscopic images showing Psd-95 

1252 (green, left), vGlut-1 (green, right), and Map-2 (red) immunofluorescent signals. Scale bars 

1253 represent 50 µm. (B) A significant reduction in Syn-1/2 positive, presynaptic puncta per 

1254 micrometer neurite is detected in cultures from heterozygous CUL3 KO clones 6 and 19 

1255 compared to isogenic wildtypes. ****p ≤ 0.0001, unpaired Welch’s t-tests. (C) The density of 

1256 Psd-95 positive, postsynaptic puncta does not significantly differ between genotypes. 90-130 

1257 regions of interest per well, and 4 wells per clone were analyzed. Data are shown in box-and 

1258 whiskers plots. The box depicts the median and the 25th and 75th quartiles, and the whiskers 

1259 show the 5th and 95th percentile. Additional information on statistical analysis is given in 

1260 Supplementary Table S2.

1261

1262 Fig. 10. Analysis of evoked electrical activity of NGN2-induced neurons using MEA recordings 

1263 and calcium imaging, respectively. (A) Exposure of channelrhodopsin-2 expressing, induced 

1264 neurons on MEA plates to ten blue light pulses evokes time-locked electrical spikes as shown 

1265 by representative raster plots from isogenic wildtype clone CB4 and heterozygous CUL3 KO 

1266 clone 6, respectively. The blue lines indicate light ON. At the highest light intensity (5 mA) 

1267 evoked activity in CUL3 KO neuron cultures declines after 5 light pulses. (B) The increase in 

1268 spike rate following optogenetic stimulation is significantly smaller in heterozygous CUL3 KO 

1269 neuron cultures from clones 6 and 19 compared to isogenic WT control clones. **p ≤ 0.01, ***p 

1270 ≤ 0.001, unpaired Welch’s t-tests. (C) Electrical stimulation and calcium imaging of NGN2-

1271 induced neurons using a fluorometric imaging plate reader provides consistent results. A 

1272 significant decrease in excitability of heterozygous CUL3 KO neurons from clones 6 and 19 is 

1273 visible at increasing stimulus intensity, when compared to isogenic control clones. ***p ≤ 0.001, 

1274 unpaired Welch’s t-tests. Data are from 4-6 cultures per clone. Graphs depict mean ± SEM. 
1275 Additional information on statistical analysis is given in Supplementary Table S2. 

1276
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1277 Fig. 11. (A, upper panel) Representative immunoblots showing similar levels of the putative 

1278 Cullin-3 substrate RhoA in heterozygous CUL3 KO iPSCs and NPCs, respectively, compared 

1279 to isogenic WT control cultures. (A, lower panel) Total protein stain confirms similar protein 

1280 loading. M, protein markers (colorimetric detection); +/+_4, wildtype, parental control iPSC line 

1281 CB4; +/+_2 and +/+_13, Cas9/gRNA-transfected, non-edited, wildtype iPSC clones 2 and 13, 

1282 respectively; +/-_6 and +/-_19, Cas9/gRNA-transfected, heterozygous CUL3 knockout (KO) 

1283 clones 6 and 19, respectively. (B) Analysis of target gene expression of FGFR/MAPK signaling 

1284 in NPC cultures. Messenger RNA levels of the feedback inhibitors SPRY1 and IL17RD/SEF 

1285 are significantly lower in heterozygous CUL3 KO NPCs. **p ≤ 0.01, unpaired Welch’s t-tests. 

1286 Data from 5-8 NPC cultures per clone are shown in box-and whiskers plots. The box depicts 

1287 the median and the 25th and 75th quartiles, and the whiskers show the 5th and 95th percentile. 

1288 Additional information on statistical analysis is given in Supplementary Table S2.

1289 Highlights 

1290  Heterozygous CUL3 knockout (ko) iPSC and isogenic control lines were generated using 

1291 CRISPR/Cas9 nickase

1292  Neuronal differentiation by small molecules showed delayed transition from radial glia to 

1293 neurons in CUL3 ko cultures

1294  Direct neuronal conversion of CUL3 ko iPSC by lentiviral Ngn-2 overexpression obscured 

1295 delayed neuronal differentiation

1296  Evoked neuronal activity is decreased in Ngn2-induced neurons from CUL3 ko iPSC, while 

1297 spontaneous activity is unchanged

1298  FGF signaling is affected in CUL3 knockout neural precursor cells, while RhoA and Notch 

1299 signaling is unaltered    
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