2,528 research outputs found
Surface flashover of oil-immersed dielectric materials in uniform and non-uniform fields
The applied electrical fields required to initiate surface flashover of different types of dielectric material immersed in insulating oil have been investigated, by applying impulses of increasing peak voltage until surface flashover occurred. The behavior of the materials in repeatedly over-volted gaps was also analyzed in terms of breakdown mode (some bulk sample breakdown behaviour was witnessed in this regime), time to breakdown, and breakdown voltage. Cylindrical samples of polypropylene, low-density polyethylene, ultra-high molecular weight polyethylene, and Rexolite, were held between two electrodes immersed in insulating oil, and subjected to average applied electrical fields up to 870 kV/cm. Tests were performed in both uniform- and non-uniform-fields, and with different sample topologies. In applied field measurements, polypropylene required the highest levels of average applied field to initiate flashover in all electrode configurations tested, settling at similar to 600 kV/cm in uniform fields, and similar to 325 kV/cm in non-uniform fields. In over-volted point-plane gaps, ultra-high molecular weight polyethylene exhibited the longest pre-breakdown delay times. The results will provide comparative data for system designers for the appropriate choice of dielectric materials to act as insulators for high-voltage, pulsed-power machines
The suitability of N2 to replace SF6 in a triggered spark-gap switch for pulsed power applications
The high dielectric strength of sulphur hexafluoride (SF6) when compared with other gases, coupled with safety benefits such as non-flammability and non-toxicity, has seen the widespread use of SF6 for the insulation of switching components. However, SF6 is now widely recognised as a highly damaging greenhouse gas, and investigations of the switching properties of alternative gases to replace SF6 within the bounds of existing system topologies are required. In the present paper, a comparative study has been carried out on a triggered spark-gap of type presently deployed in industrial pulsed-power machines, to determine the suitability of nitrogen (N2) to replace SF6 as the switching medium, without compromising on functionality. Experiments were performed with fast-rising trigger pulses to minimise the delay time to breakdown and jitter, and three distinct operational regimes have been identified for both gases as the pressure inside the switch is increased. The static breakdown characteristics and upper pressure boundaries of operation have been determined for both gases at a range of dc charging voltages. Measurements of the time to breakdown have shown jitters as low as 1.3 ns when operating in N2, highlighting the potential of N2 to replace SF6 without the need for re-design or replacement of the presently used switch
Bubble Raft Model for a Paraboloidal Crystal
We investigate crystalline order on a two-dimensional paraboloid of
revolution by assembling a single layer of millimeter-sized soap bubbles on the
surface of a rotating liquid, thus extending the classic work of Bragg and Nye
on planar soap bubble rafts. Topological constraints require crystalline
configurations to contain a certain minimum number of topological defects such
as disclinations or grain boundary scars whose structure is analyzed as a
function of the aspect ratio of the paraboloid. We find the defect structure to
agree with theoretical predictions and propose a mechanism for scar nucleation
in the presence of large Gaussian curvature.Comment: 4 pages, 4 figure
Excited Baryons in Large N_c QCD Revisited: The Resonance Picture Versus Single-Quark Excitations
We analyze excited baryon properties via a 1/N_c expansion from two
perspectives: as resonances in meson-nucleon scattering, and as single-quark
excitations in the context of a simple quark model. For both types of analysis
one can derive novel patterns of degeneracy that emerge as N_c --> \infty, and
that are shown to be compatible with one another. This helps justify the
single-quark excitation picture and may give some insight into its successes.
We also find that in the large N_c limit one of the S_{11} baryons does not
couple to the pi-N channel but couples to the eta-N channel. This is
empirically observed in the N(1535), which couples very weakly to the pi-N
channel and quite strongly to the eta-N channel. The comparatively strong
coupling of the N(1650) to the pi-N channel and weak coupling to eta-N channel
is also predicted. In the context of the simple quark model picture we
reproduce expressions for mixing angles that are accurate up to O(1/N_c)
corrections and are in good agreement with mixing angles extracted
phenomenologically.Comment: 13 pages, ReVTeX
Structural investigation into the threading intercalation of a chiral dinuclear ruthenium(II) polypyridyl complex through a B-DNA oligonucleotide
Herein we report the separation of the three stereoisomers of the DNA light-switch compound [{Ru(bpy)2}2(tpphz)]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine) by column chromatography and the characterization of each stereoisomer by X-ray crystallography. The interaction of these compounds with a DNA octanucleotide d(GCATATCG).d(CGATATGC) has been studied using NMR techniques. Selective deuteration of the bipyridyl rings was needed to provide sufficient spectral resolution to characterize structures. NMR-derived structures for these complexes show a threading intercalation binding mode with slow and chirality-dependent rates. This represents the first solution structure of an intercalated bis-ruthenium ligand. Intriguingly, we find that the binding site selectivity is dependent on the nature of the stereoisomer employed, with Λ RuII centers showing a better intercalation fit
Impulse-breakdown characteristics of polymers immersed in insulating oil
Surface discharges along oil-immersed solids used as insulators and supports in high-voltage pulsed-power equipment can lead to catastrophic system failures. To achieve reliable compact pulsed-power systems, it is important to quantify the electrical fields at which surface flashover, or other types of breakdown event, will occur for different dielectric materials. This paper reports the observed behavior of samples of polypropylene, low-density polyethylene, ultrahigh-molecular-weight polyethylene, Rexolite, and Torlon, which were subjected to impulse voltages of peak amplitude of 350 kV and a rise time of 1 . The cylindrical samples were located between pairs of electrodes immersed in insulating oil. Breakdown events were studied under both nonuniform- and uniform-field conditions, with sample lengths being chosen so that the breakdown events occurred on the rising edge of the impulse. Ultrahigh-molecular-weight polyethylene showed the highest average breakdown field, which is 645 kV/cm, in uniform fields, and the corresponding breakdown field was reduced to 400 kV/cm in the nonuniform fields. Weibull plots of the various sets of results are presented, providing comparative data for system designers for the appropriate choice of dielectric materials to act as insulators for high-voltage pulsed-power machines
Going higher in the First-order Quantifier Alternation Hierarchy on Words
We investigate the quantifier alternation hierarchy in first-order logic on
finite words. Levels in this hierarchy are defined by counting the number of
quantifier alternations in formulas. We prove that one can decide membership of
a regular language to the levels (boolean combination of
formulas having only 1 alternation) and (formulas having only 2
alternations beginning with an existential block). Our proof works by
considering a deeper problem, called separation, which, once solved for lower
levels, allows us to solve membership for higher levels
On the breakdown of perturbative integrability in large N matrix models
We study the perturbative integrability of the planar sector of a massive
SU(N) matrix quantum mechanical theory with global SO(6) invariance and
Yang-Mills-like interaction. This model arises as a consistent truncation of
maximally supersymmetric Yang-Mills theory on a three-sphere to the lowest
modes of the scalar fields. In fact, our studies mimic the current
investigations concerning the integrability properties of this gauge theory.
Like in the field theory we can prove the planar integrability of the SO(6)
model at first perturbative order. At higher orders we restrict ourselves to
the widely studied SU(2) subsector spanned by two complexified scalar fields of
the theory. We show that our toy model satisfies all commonly studied
integrability requirements such as degeneracies in the spectrum, existence of
conserved charges and factorized scattering up to third perturbative order.
These are the same qualitative features as the ones found in super Yang-Mills
theory, which were enough to conjecture the all-loop integrability of that
theory. For the SO(6) model, however, we show that these properties are not
sufficient to predict higher loop integrability. In fact, we explicitly
demonstrate the breakdown of perturbative integrability at fourth order.Comment: 27 page
Synthesizing diverse evidence: the use of primary qualitative data analysis methods and logic models in public health reviews
Objectives: The nature of public health evidence presents challenges for conventional systematic review processes, with increasing recognition of the need to include a broader range of work including observational studies and qualitative research, yet with methods to combine diverse sources remaining underdeveloped. The objective of this paper is to report the application of a new approach for review of evidence in the public health sphere. The method enables a diverse range of evidence types to be synthesized in order to examine potential relationships between a public health environment and outcomes.
Study design: The study drew on previous work by the National Institute for Health and Clinical Excellence on conceptual frameworks. It applied and further extended this work to the synthesis of evidence relating to one particular public health area: the enhancement of employee mental well-being in the workplace.
Methods: The approach utilized thematic analysis techniques from primary research, together with conceptual modelling, to explore potential relationships between factors and outcomes.
Results: The method enabled a logic framework to be built from a diverse document set that illustrates how elements and associations between elements may impact on the well-being of employees.
Conclusions: Whilst recognizing potential criticisms of the approach, it is suggested that logic models can be a useful way of examining the complexity of relationships between factors and outcomes in public health, and of highlighting potential areas for interventions and further research. The use of techniques from primary qualitative research may also be helpful in synthesizing diverse document types. (C) 2010 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved
- …