1,069 research outputs found

    Designing a fully compensated half-metallic ferrimagnet

    Get PDF
    Recent experimental work on Mn2RuxGa demonstrates its potential as a compensated ferrimagnetic half-metal (CFHM). Here we present a set of high-throughput ab initio density functional theory calculations and detailed experimental characterisation, that enable us to correctly describe the nominal Mn2RuxGa thin films, in particular with regard to site-disorder and defects. We then construct models that accurately capture all the key features of the Mn-Ru-Ga system, including magnetic compensation and the spin gap at the Fermi level. We find that electronic doping is neccessary, which is achieved with a Mn/Ga ratio smaller than two. Our study shows how composition and substrate-induced biaxial strain can be combined to design a ferrimagnetic half-metal with a compensation point close to room temperature

    Scaling of Majorana Zero-Bias Conductance Peaks

    Full text link
    We report an experimental study of the scaling of zero-bias conductance peaks compatible with Majorana zero modes as a function of magnetic field, tunnel coupling, and temperature in one-dimensional structures fabricated from an epitaxial semiconductor-superconductor heterostructure. Results are consistent with theory, including a peak conductance that is proportional to tunnel coupling, saturates at 2e2/h2e^2/h, decreases as expected with field-dependent gap, and collapses onto a simple scaling function in the dimensionless ratio of temperature and tunnel coupling.Comment: Accepted in Physical Review Letter

    An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS

    Full text link
    We present an adaptive space-time phase field formulation for dynamic fracture of brittle shells. Their deformation is characterized by the Kirchhoff-Love thin shell theory using a curvilinear surface description. All kinematical objects are defined on the shell's mid-plane. The evolution equation for the phase field is determined by the minimization of an energy functional based on Griffith's theory of brittle fracture. Membrane and bending contributions to the fracture process are modeled separately and a thickness integration is established for the latter. The coupled system consists of two nonlinear fourth-order PDEs and all quantities are defined on an evolving two-dimensional manifold. Since the weak form requires C1C^1-continuity, isogeometric shape functions are used. The mesh is adaptively refined based on the phase field using Locally Refinable (LR) NURBS. Time is discretized based on a generalized-α\alpha method using adaptive time-stepping, and the discretized coupled system is solved with a monolithic Newton-Raphson scheme. The interaction between surface deformation and crack evolution is demonstrated by several numerical examples showing dynamic crack propagation and branching.Comment: In this version, typos were fixed, Fig. 16 is added, the literature review is extended and clarifying explanations and remarks are added at several places. Supplementary movies are available at https://av.tib.eu/series/641/supplemental+videos+of+the+paper+an+adaptive+space+time+phase+field+formulation+for+dynamic+fracture+of+brittle+shells+based+on+lr+nurb

    Scientific mindfulness: a foundation for future themes in international business

    Get PDF
    We conceptualize new ways to qualify what themes should dominate the future IB research agenda by examining three questions: Whom should we ask? What should we ask and which selection criteria should we apply? What are the contextual forces? We propose scientific mindfulness as the way forward for generating themes in IB research

    Crystal orientation-dependent etching and trapping in thermally-oxidised Cu<sub>2</sub>O photocathodes for water splitting

    Full text link
    Ammonia solution etching was carried out on thermally-oxidised cuprous oxide (TO-Cu2O) in photocathode devices for water splitting. The etched devices showed increased photoelectrochemical (PEC) performance compared to the unetched ones as well as improved reproducibility. -8.6 mA cm-2 and -7 mA cm-2 photocurrent density were achieved at 0 V and 0.5 V versus the reversible hydrogen electrode (VRHE), respectively, in the champion sample with an onset potential of 0.92 VRHE and a fill factor of 44 %. An applied bias photon-to-current efficiency of 3.6 % at 0.56 VRHE was obtained, which represents a new record for Cu2O-based photocathode systems. Capacitance-based profiling studies showed a strong pinning effect from interfacial traps in the as-grown device, and these traps were removed by ammonia solution etching. Moreover, the etching procedure gave rise to a diverse morphology of Cu2O crystals based on the different crystallographic orientations. The distribution of crystallographic orientations and the relationship between the crystal orientation and the morphology after etching were examined by electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The high-index crystal group showed a statistically higher PEC performance than the low-index group. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) revealed metallic copper at the Cu2O/Ga2O3 interface, which we attribute as the dominant trap that limits the PEC performance. It is concluded that the metallic copper originates from the reduction of the CuO impurity layer on the as-grown Cu2O sample during the ALD process, while the reduction from Cu2O to Cu is not favorable

    An Experimental Investigation of the Adsorption of a Phosphonic Acid on the Anatase TiO2(101) Surface

    Get PDF
    A combination of synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has been used to study the adsorption of phenylphosphonic acid (PPA) on anatase TiO2(101) single crystal at coverages of 0.15 monolayer (ML) and 0.85 ML. The photoelectron spectroscopy data suggest that at 0.15 ML coverage PPA adsorbs in a bidentate geometry following deprotonation of both phosphonate hydroxyl groups, leaving the P═O group unbound. At 0.85 ML there is a shift to a mixed bidentate/monodentate binding mode. The carbon K-edge NEXAFS spectra were recorded at two azimuths. Our calculations show that for PPA on anatase TiO2(101) the phenyl ring is oriented 65 ± 4° away from the surface plane with an azimuthal twist of 57 ± 11° away from the [101] azimuth
    corecore