9,614 research outputs found
Access to and use of marine genetic resources : understanding the legal framework
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Acknowledgements This work was supported by the PharmaSea project funded by the EU Seventh Framework Programme, and reects only the authors' views. Contract number 312184. www.pharma-sea.eu.Peer reviewedPublisher PD
How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking
Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects
Mare Geneticum : Balancing Governance of Marine Genetic Resources in International Waters
Peer reviewedPublisher PD
Biased attention near another's hand following joint action
Previous research has shown that attention is prioritized for the space near the hand, leading to faster detection of visual targets appearing close to one's own hand. In the present study, we examined whether observers are also facilitated in detecting targets presented near another's hand by having participants perform a Posner cueing task while sitting next to a friend. Across blocks, either the participant or the friend placed a hand next to one of the target locations. Our results robustly showed that participants detected targets appearing near their own hands more quickly than targets appearing away from their hands, replicating previous work demonstrating that spatial attention is prioritized near one's own hand (Experiments 1–4). No such attentional bias effects were found for targets appearing near the friend's hand, suggesting that spatial attention is not automatically prioritized near another's hand (Experiments 1 and 2). However, participants were faster to detect targets near the friend's hand following a joint action task, suggesting a shared body representation plays an influential role in biasing attention to the space near another's hand (Experiment 4)
A genetic and molecular model for flower development in Arabidopsis thaliana
Cells in developing organisms do not only differentiate, they differentiate in defined patterns. A striking example is the differentiation of flowers, which in most plant families consist of four types of organs: sepals, petals, stamens and carpels, each composed of characteristic cell types. In the families of flowering plants in which these organs occur, they are patterned with the sepals in the outermost whorl or whorls of the flower, with the petals next closest to the center, the stamens even closer to the center, and the carpels central. In each species of flowering plant the disposition and number (or range of numbers) of these organs is also specified, and the floral 'formula' is repeated in each of the flowers on each individual plant of the species. We do not know how cells in developing plants determine their position, and in response to this determination differentiate to the cell types appropriate for that position. While there have been a number of speculative proposals for the mechanism of organ specification in flowers (Goethe, 1790; Goebel, 1900; Heslop-Harrison, 1964; Green, 1988), recent genetic evidence is inconsistent with all of them, at least in the forms in which they were originally presented (Bowman et al. 1989; Meyerowitz et al. 1989). We describe here a preliminary model, based on experiments with Arabidopsis thaliana. The model is by and large consistent with existing evidence, and has predicted the results of a number of genetic and molecular experiments that have been recently performed
Genetic variation in ecophysiological and survival responses to drought in two native grasses: Koeleria Macrantha and Elymus Elymoides
Genetic variation in ecophysiological and survival responses to drought was studied in 2 northern Arizona native grass species, Koeleria macrantha (Ledeb.) Schult. (prairie Junegrass) and Elymus elymoides (Raf.) Swezey. ssp. elymoides (squirreltail). Low- and high-elevation populations of each species were compared in a greenhouse common garden experiment that included simulated drought. Leaf gas-exchange characteristics were significantly affected by simulated drought and often by population elevation, but gas-exchange responses to drought were similar for high- and low-elevation populations. Compared to high-elevation populations, low-elevation populations of both species had higher net photosynthetic rate and predawn water potential, and for E. elymoides had higher stomatal conductance. Leaf-level water-use efficiency did not differ between populations for either species. Populations also differed significantly in leaf morphological characteristics related to water use. Compared to high-elevation populations, low-elevation populations of both species had smaller leaves. Low-elevation populations of both species survived aboveground longer than high-elevation populations during drought, with a larger difference in K. macrantha than in E. elymoides. These results suggest strong selection for drought adaptation and water use along an elevational and water-availability gradient in native grasses. (English
Linking country level food supply to global land and water use and biodiversity impacts : The case of Finland
The agricultural products consumed in Finland are increasingly grown on foreign farms. We analyze the Finnish imports of food and feed crops from 1986 to 2011 by products and by their geographic origin drawing a link to environmental impacts. The share of foreign crops consumed in Finland nearly doubled in the study period. The imports increased especially with commodities that could also be produced domestically. While the production of food increasingly shifted abroad, also the exports from Finland increased. >90% of the blue water of the Finnish crop supply came from foreignwater resources. Wemap the results of land and water use together with their impacts on global biodiversity, and show thatmost of the land and water use related biodiversity impacts (>93%) associated with the Finnish food consumption are related to the imports and therefore taken place outside the Finnish borders. The use ofmultiple environmental indicators can help identifying products and spatial hotspots associated with themost severe environmental impacts of the Finnish crop imports contributing to a more holistic decision-making and the promoting of sustainable food consumption both domestically and globally. (C) 2016 Elsevier B. V. All rights reserved.Peer reviewe
- …