128 research outputs found

    Oscillation modes of dc microdischarges with parallel-plate geometry

    Full text link
    Two different oscillation modes in microdischarge with parallel-plate geometry has been observed: relaxation oscillations with frequency range between 1.23 and 2.1 kHz and free-running oscillations with 7 kHz frequency. The oscillation modes are induced by increasing power supply voltage or discharge current. For a given power supply voltage, there is a spontaneous transition from one to other oscillation mode and vice versa. Before the transition from relaxation to free-running oscillations, the spontaneous increase of oscillation frequency of relaxation oscillations form 1.3 kHz to 2.1 kHz is measured. Fourier Transform Spectra of relaxation oscillations reveal chaotic behaviour of microdischarge. Volt-Ampere characteristics associated with relaxation oscillations describes periodical transition between low current, diffuse discharge and normal glow. However, free-running oscillations appear in subnormal glow only.Comment: Submitted to: New Journal of Physic

    Enhancement of thermovoltage and tunnel magneto-Seebeck effect in CoFeB based magnetic tunnel junctions by variation of the MgAl2_2O4_4 and MgO barrier thickness

    Get PDF
    We investigate the influence of the barrier thickness of Co40_{40}Fe40_{40}B20_{20} based magnetic tunnel junctions on the laser-induced tunnel magneto-Seebeck effect. Varying the barrier thickness from 1nm to 3nm, we find a distinct maximum in the tunnel magneto-Seebeck effect for 2.6nm barrier thickness. This maximum is independently measured for two barrier materials, namely MgAl2_2O4_4 and MgO. Additionally, samples with an MgAl2_2O4_4 barrier exhibit a high thermovoltage of more than 350μ\muV in comparison to 90μ\muV for the MTJs with MgO barrier when heated with the maximum laser power of 150mW. Our results allow for the fabrication of improved stacks when dealing with temperature differences across magnetic tunnel junctions for future applications in spin caloritronics, the emerging research field that combines spintronics and themoelectrics

    Electronic and magnetic structure of epitaxial NiO/Fe3_3O4_4(001) heterostructures grown on MgO(001) and Nb-doped SrTiO3_3(001)

    Get PDF
    We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe3_3O4_4(001) bilayers grown on MgO(001) and Nb-SrTiO3_3(001) substrates. We compare the results with those obtained on pure Fe3_3O4_4(001) thin films. It is found that the magnetite layers are oxidized and Fe3+^{3+} dominates at the surfaces due to maghemite (γ\gamma-Fe2_2O3_3) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe3_3O4_4. At the interface between NiO and Fe3_3O4_4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2_2O4_4 interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45^{\circ} rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe3_3O4_4 films grown on Nb-SrTiO3_3 exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite

    Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes

    Get PDF
    Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some {\mu}V, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co2_2FeAl and Co2_2FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B based junctions.Comment: 9 pages, 4 figure

    Sign change in the tunnel magnetoresistance of Fe3O4/MgO/Co-Fe-B magnetic tunnel junctions depending on the annealing temperature and the interface treatment

    Full text link
    Magnetite (Fe3O4) is an eligible candidate for magnetic tunnel junctions (MTJs) since it shows a high spin polarization at the Fermi level as well as a high Curie temperature of 585{\deg}C. In this study, Fe3O4/MgO/Co-Fe-B MTJs were manufactured. A sign change in the TMR is observed after annealing the MTJs at temperatures between 200{\deg}C and 280{\deg}C. Our findings suggest an Mg interdiffusion from the MgO barrier into the Fe3O4 as the reason for the change of the TMR. Additionally, different treatments of the magnetite interface (argon bombardment, annealing at 200{\deg}C in oxygen atmosphere) during the preparation of the MTJs have been studied regarding their effect on the performance of the MTJs. A maximum TMR of up to -12% could be observed using both argon bombardment and annealing in oxygen atmosphere, despite exposing the magnetite surface to atmospheric conditions before the deposition of the MgO barrier.Comment: 5 pages, 5 figures, 2 table
    corecore