17 research outputs found

    HyStemÂź: A Unique Clinical Grade Hydrogel for Present and Future Medical Applications

    Get PDF
    Medicine needs targeted, minimally-invasive delivery of protein-based and cell-based therapeutics to increase efficacy and reduce occurrence and severity of side effects. Local delivery requires a matrix to sequester and protect the medicine until its effect can be realized. The problem is, unlike stable small molecule drugs, proteins and cells cannot be co-packaged with a matrix in a prefilled syringe—they must be mixed with their matrix at the point of care. HyStem hydrogels fix this problem: They are arguably the first commercially available, GMP-qualified biodegradable hydrogels both with the ability to formulate with either proteins or cells in the hospital/surgical suite and with a history of safe use in humans. HyStem is designed to be protein, cell-friendly and in situ crosslinkable, permitting homogeneous mixing of therapeutics. One HyStem formulation is 510(k) cleared and another the subject of two European clinical trials. Key applications include localized delivery of therapeutic growth factors, antibodies, and cells. In the future, we envision HyStem’s flexibility and clinical use history forming the basis for a new generation of therapeutics. Two examples described here include HyStem’s use for patient-derived organoid culture to develop new drugs as well as for bioprinting to manufacture new organs

    Modification of Fruit Ripening by Suppressing Gene Expression

    Full text link

    Intracerebral Delivery of Brain-Derived Neurotrophic Factor Using HyStem<sup>Âź</sup>-C Hydrogel Implants Improves Functional Recovery and Reduces Neuroinflammation in a Rat Model of Ischemic Stroke

    Get PDF
    Ischemic stroke is a leading cause of death and disability worldwide. Potential therapeutics aimed at neural repair and functional recovery are limited in their blood-brain barrier permeability and may exert systemic or off-target effects. We examined the effects of brain-derived neurotrophic factor (BDNF), delivered via an extended release HyStem&#174;-C hydrogel implant or vehicle, on sensorimotor function, infarct volume, and neuroinflammation, following permanent distal middle cerebral artery occlusion (dMCAo) in rats. Eight days following dMCAo or sham surgery, treatments were implanted directly into the infarction site. Rats received either vehicle, BDNF-only (0.167 &#181;g/&#181;L), hydrogel-only, hydrogel impregnated with 0.057 &#181;g/&#181;L of BDNF (hydrogel + BDNFLOW), or hydrogel impregnated with 0.167 &#181;g/&#181;L of BDNF (hydrogel + BDNFHIGH). The adhesive removal test (ART) and 28-point Neuroscore (28-PN) were used to evaluate sensorimotor function up to two months post-ischemia. The hydrogel + BDNFHIGH group showed significant improvements on the ART six to eight weeks following treatment and their behavioral performance was consistently greater on the 28-PN. Infarct volume was reduced in rats treated with hydrogel + BDNFHIGH as were levels of microglial, phagocyte, and astrocyte marker immunoexpression in the corpus striatum. These data suggest that targeted intracerebral delivery of BDNF using hydrogels may mitigate ischemic brain injury and restore functional deficits by reducing neuroinflammation

    Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke

    No full text
    Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood–brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate (Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate

    Micropatterning of 3D Microenvironments for Living Biosensor Applications

    No full text
    Micro-scale printing and patterning of living cells has multiple applications including tissue engineering, cell signaling assays, and the fabrication of cell-based biosensors. In this work, a molecular printing instrument, the Bioforce Nano eNabler, was modified to enable micron-scale “quill-pen” based printing of mammalian cells in a 3D hyaluronan/gelatin based hydrogel. Specifically, photo-initiated “thiol-ene” click chemistry was used to couple the thiol groups of thiolated hyaluronan/thiolated gelatin to the alkene groups of 4-arm polyethylene glycol (PEG)-norbornene molecules. Rapid photopolymerization enabled direct printing and controlled curing of living cells within the hydrogel matrix. The resulting hydrogels were biocompatible with human adipose-derived stem cells, NIH-3T3 cells, and mouse embryonic stem cells. The utility of this printing approach was also explored for cell-based biosensors. Micro-printed cells expressing a redox sensitive variant of the green fluorescent protein (roGFP-R12) showed a measurable fluorescent response to addition of oxidizing and then reducing agents. This work represents a novel approach to micron-scale cell patterning, and its potential for living, cell-based biosensors
    corecore